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Pattern Collections

» The space requirements for a pattern database
grow exponentially with the number of state variables
in the pattern.

» This places severe limits on the usefulness
of single PDB heuristics h” for larger planning task.

» To overcome this limitation, planners using pattern databases
work with collections of multiple patterns.

» When using two patterns P; and Ps, it is always possible
to use the maximum of At and h™2 as an admissible
and consistent heuristic estimate.

» However, when possible, it is much preferable
to use the sum of A and h™2 as a heuristic estimate,
since h1 + W2 > max{hF1 hP2}.
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Criterion for Additive Patterns

Theorem (Additive Pattern Sets)

Let P1,..., Py be disjoint patterns for an FDR planning task 1.
If there exists no operator that has an effect

on a variable v; € P; and on a variable v; € P; for some i # |,
then Zf-‘zl hPi is an admissible and consistent heuristic for I.

Proof.

If there exists no such operator, then no label of 7(IM) affects both
T(M)™i and T(M)™i for i # j. By the theorem on affecting
transition labels, this means that any two projections 7p, and mp,
are orthogonal. The claim follows with the theorem on additivity
for orthogonal abstractions. [

A pattern set {P1, ..., Px} which satisfies the criterion
of the theorem is called an additive pattern set or additive set.
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Finding Additive Pattern Sets

The theorem on additive pattern sets gives us a simple criterion
to decide which pattern heuristics can be admissibly added.

Given a pattern collection C (i.e., a set of patterns),
we can use this information as follows:
@ Build the compatibility graph for C.
» Vertices correspond to patterns P € C.

» There is an edge between two vertices iff
no operator affects both incident patterns.

@ Compute all maximal cliques of the graph.
These correspond to maximal additive subsets of C.
» Computing large cliques is an NP-hard problem,
and a graph can have exponentially many maximal cliques.
» However, there are output-polynomial algorithms for finding
all maximal cliques (Tomita, Tanaka & Takahashi, 2004)
which have led to good results in practice.
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Finding Additive Pattern Sets: Example

Example

Consider a planning task with state variables V = {vq,...,vs}

and the pattern collection C = {P1,..., Ps} with Py = {v1, w2, v3},
P2 = {Vl, V2}, P3 = {V3}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable,

variables v; and v», variables v3 and v4 and variables v3 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {PQ, P3}, {Pg, P4, P5}
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The Canonical Heuristic Function

Definition (Canonical Heuristic Function)
Let C be a pattern collection for an FDR planning task.

The canonical heuristic h° for pattern collection C is defined as

h(s)=  max Z hP (s),

Decliques(C) peD

where cliques(C) is the set of all maximal cliques
in the compatibility graph for C.

For all choices of C, heuristic K is admissible and consistent.
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How Good is the Canonical Heuristic Function?

» The canonical heuristic function is the best possible admissible
heuristic we can derive from C using our additivity criterion.

» Even better heuristic estimates can be obtained from
projection heuristics using a more general additivity criterion
based on an idea called cost partitioning.

~ We will return to this topic in Part E.
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Canonical Heuristic Function: Example

Example

Consider a planning task with state variables V = {vq,...,vs}

and the pattern collection C = { P41, ..., Ps} with Py = {v1, w2, v3},
P2 = {Vl, V2}, P3 = {Vg}, P4 = {V4} and P5 = {V5}.

There are operators affecting each individual variable, an operator
that affects v; and v» and an operator that affects v3, v4 and vs.

What are the maximal cliques in the compatibility graph for C?
Answer: {Pl}, {Pz, P3}, {PQ, P4, P5}
What is the canonical heuristic function h¢?

Answer:
h¢ = max {hP1, hP2 4 hPs APz 4 pPe 4 pPs)
— max{h{VLVz,Vs}’ hivi,ve} 4 h{Va}’ hivi,ve} + hiva} + h{Vs}}
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D5.2 Dominated Additive Sets
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Computing h¢ Efficiently: Motivation

Consider
K = max {htvivewsd plviwel 4 plvl plvived 4 plvd 4 plety,

» We need to evaluate this expression for every search node.

» |t is thus worth to spend some effort in precomputations
to make the evaluation more efficient.

A naive implementation requires 5 PDB lookups
(one for each pattern) and maximizes over 3 additive sets.

Can we do better?
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Dominated Sum Theorem

Theorem (Dominated Sum)
Let {P1,..., Py} be an additive pattern set for an FDR planning
task M, and let P be a pattern with P; C P for all i € {1,... k}.

Then Sk | hPi < hP.

Proof.

Because P; C P, all projections mp, are coarsenings

of the projection 7p. Let 77 := T(M)™.

We can view each h"i as an abstraction heuristic for solving 7.
By the argumentation of the previous theorem, {Pi,..., P} is an
additive pattern set and hence Zle h*i is an admissible heuristic
for solving 7’. Hence, lele h" is bounded by the optimal

goal distances in 7', which implies fozl hPr < hP.
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Dominated Sum Corollary

Corollary (Dominated Sum)

Let {P1,...,Pn} and {Qu,..., Qm} be additive pattern sets
of an FDR planning task such that each pattern P;

is a subset of some pattern Q; (not necessarily proper).

Then Y iy hP <337 b9
Proof.
u 1) & ?) &
AR DD INLED 1)
i=1 Jj=1PiCQ; Jj=1
where (1) holds because each P; is contained in some Q;

and (2) follows from the dominated sum theorem.
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Dominance Pruning

> We can use the dominated sum corollary
to simplify the representation of h¢:
sums that are dominated by other sums can be pruned.

» The dominance test can be performed in polynomial time.
Example
max{h{vl’VZ’V?’}, plvive} h{Vz}7 plvive} o plval h{Vs}}
= max {hivovavsh plusel 4 plvel o plshy

~> number of PDB lookups reduced from 5 to 4;
number of additive sets reduced from 3 to 2
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D5.3 Redundant Patterns
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Redundant Patterns

» The previous example shows that sometimes,
not all patterns in a pattern collection are useful.

> Pattern {v3} could be removed because
it does not affect the heuristic value.

» In this section, we will show that certain patterns
are never useful and should thus never be considered.

» Knowing about such redundant patterns is useful for
algorithms that try to find good patterns automatically.

~~ It allows us to focus on the useful ones.
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Non-Goal Patterns

Theorem (Non-Goal Patterns are Trivial)

Let M be a SAS™ planning task, and let P be a pattern for I

such that no variable in P is mentioned in the goal formula of T1.
Then hP(s) = 0 for all states s.

Proof.
All states in the abstraction are goal states.

~> Patterns with no goal variables are redundant.
They should not be included in a pattern collection.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

20 /

Redundant Patterns

31




D5. Pattern Databases: Multiple Patterns

Causal Graphs: Motivation

» For more interesting notions of redundancy,
we need to introduce causal graphs.

» Causal graphs describe the dependency structure
between the state variables of a planning task.

» Causal graphs are a general tool for analyzing planning tasks.

P> They are used in many contexts besides abstraction heuristics.
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Causal Graphs

Definition (Causal Graph)
Let M= (V,I,0,~) be an FDR planning task.

The causal graph of I, written CG(I1), is the directed graph
whose vertices are the state variables V' and which has an arc (u, v)
iff u # v and there exists an operator o € O such that:
» u appears anywhere in o (in precondition, effect conditions
or atomic effects), and

» v is modified by an effect of o.

Idea: an arc (u,v) in the causal graph indicates that variable u
is in some way relevant for modifying the value of v
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Causally Relevant Variables

Definition (Causally Relevant)

Let M= (V,I,0,v) be an FDR planning task,

and let P C V be a pattern for I1.

We say that v € P is causally relevant for P if CG(IN),
restricted to the variables of P, contains a directed path from v
to a variable v/ € P that is mentioned in the goal formula 7.

Note: The definition implies that variables in P mentioned
in the goal are always causally relevant for P.
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Causally Irrelevant Variables are Useless

Theorem (Causally Irrelevant Variables are Useless)
Let P C V be a pattern for an FDR planning task I, and let
P’ C P consist of all variables that are causally relevant for P.

Then hP(s) = hP'(s) for all states s.

~» Patterns P where not all variables are causally relevant are
redundant. The smaller subpattern P’ should be used instead.
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Causally Irrelevant Variables are Useless: Proof

Proof Sketch.
(>): holds because 7p is a refinement of 7p/

(<): Obvious if h¥'(s) = oo; else, consider an optimal abstract
plan (o1,...,0n) for mp/(s) in T(M)™F.

W.l.0.g., each o; modifies some variable in P’.

(Other o; are redundant and can be omitted.)

Because P’ includes all variables causally relevant for P,

no variable in P\ P’ is mentioned in any o; or in the goal.

Then the same abstract plan also is a solution for wp(s) in T ()™,
Hence, the optimal solution cost under abstraction 7p

is no larger than under 7p:.
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Causally Connected Patterns

Definition (Causally Connected)

Let M= (V,I,0,v) be an FDR planning task,

and let P C V be a pattern for I1.

We say that P is causally connected if the subgraph of CG(IN)
induced by P is weakly connected (i.e., contains a path

from every vertex to every other vertex, ignoring arc directions).
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Disconnected Patterns are Decomposable

Theorem (Causally Disconnected Patterns are Decomposable)

Let P C V be a pattern for a SAS™ planning task I

that is not causally connected, and let Py, P, be a partition of P
into non-empty subsets such that CG(I) contains no arc
between the two sets.

Then hP(s) = h"1(s) + hP2(s) for all states s.

~> Causally disconnected patterns P are redundant.
The smaller subpatterns P; and P, should be used instead.
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Disconnected Patterns are Decomposable: Proof

Proof Sketch.
(>): There is no arc between P; and P, in the causal graph,
and thus there is no operator that affects both patterns.

Therefore, they are additive, and h” > hPr + h*2 follows

from the dominated sum theorem.

(<): Obvious if hP1(s) = oo or hP2(s) = cc. Else, consider
optimal abstract plans p; for 7(M)™1 and po for 7 (M)™"2.
Because the variables of the two projections do not interact,
concatenating the two plans yields an abstract plan for 7(I1)™.

Hence, the optimal solution cost under abstraction 7p is at most
the sum of costs of p; and py, and thus h” < hP1 4 pP2.
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Summary (1)

» When faced with multiple PDB heuristics (a pattern
collection), we want to admissibly add their values where
D5.4 Summary

possible, and maximize where addition is inadmissible.
> A set of patterns is additive if each operator affects (i.e.,
assigns to a variable from) at most one pattern in the set.

» The canonical heuristic function is the best possible
additive/maximizing combination for a given pattern
collection given this additivity criterion.
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Summary (2)

Summary

Not all patterns need to be considered, as some are redundant:
» Patterns should include a goal variable (else h” = 0).

» Patterns should only include causally relevant variables
(others can be dropped without affecting the heuristic value).

» Patterns should be causally connected (disconnected patterns
can be split into smaller subpatterns at no loss).
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