Planning and Optimization
D4. Pattern Databases: Introduction

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

% Foundations |

~| Logic |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

Content of this Course: Heuristics

Abstractions

Delete Relaxation ‘ — .
in General

7 Pattern
Abstraction I
Databases

—{ Merge & Shrink

Potential
Heuristics

Projections
©00000000

Projections and Pattern Database
Heuristics

Projections

0O@0000000

Pattern Database Heuristics

m The most commonly used abstraction heuristics in search
and planning are pattern database (PDB) heuristics.

m PDB heuristics were originally introduced
for the 15-puzzle (Culberson & Schaeffer, 1996)
and for Rubik’s cube (Korf, 1997).

m The first use for domain-independent planning
is due to Edelkamp (2001).

m Since then, much research has focused on the theoretical
properties of pattern databases, how to use pattern databases
more effectively, how to find good patterns, etc.

m Pattern databases are a very active research area
both in planning and in (domain-specific) heuristic search.

m For many search problems, pattern databases are
the most effective admissible heuristics currently known.

Projections PDBs: Precomputation nting PDBs: Lookup
00®000000 o

Pattern Database Heuristics Informally

Pattern Databases: Informally

A pattern database heuristic for a planning task
is an abstraction heuristic where

m some aspects of the task are represented in the abstraction
with perfect precision, while
m all other aspects of the task are not represented at all.

This is achieved by projecting the task onto the variables
that describe the aspects that are represented.

Example (15-Puzzle)

m Choose a subset T of tiles (the pattern).
m Faithfully represent the locations of T in the abstraction.

m Assume that all other tiles and the blank can be anywhere
in the abstraction.)

Projections PDBs: Precomputation nting PDBs: Lookup

000@00000

Projections

Formally, pattern database heuristics are abstraction heuristics
induced by a particular class of abstractions called projections.

Definition (Projection)

Let I be an FDR planning task with variables V' and states S.
Let P C V, and let S’ be the set of states over P.

The projection mp : S — S’ is defined as 7p(s) := s|p,
(where s|p(v) := s(v) for all v € P).
We call P the pattern of the projection 7p.

In other words, mp maps two states s; and s, to the same
abstract state iff they agree on all variables in P.

Projections PDBs: Precomputation nting PDBs: Lookup

0000@0000

Pattern Database Heuristics

Abstraction heuristics based on projections are called
pattern database (PDB) heuristics.

Definition (Pattern Database Heuristic)

The abstraction heuristic induced by 7p is called
a pattern database heuristic or PDB heuristic.
We write h” as a shorthand for h™.

Why are they called pattern database heuristics?

m Heuristic values for PDB heuristics are traditionally stored in a
1-dimensional table (array) called a pattern database (PDB).
Hence the name “PDB heuristic”.

m The word pattern database alludes to endgame databases
for 2-player games (in particular chess and checkers).

Projections g PDBs: Precomputation
00000@000

Example: Transition System

Logistics problem with one package, two trucks, two locations:
m state variable package: {L, R, A, B}
m state variable truck A: {L, R}
m state variable truck B: {L, R}

Projections
000000800

Example: Projection (1)

Abstraction induced by 7(,ackage}:

LLR

LRL

h{package} (LRR) -9

Example: Projection (2)

Abstraction induced by T{package,truck A}:

h{package,truck A}(LRR) -9

Example: Projection (2)

Abstraction induced by T{package,truck A}:

h{package,truck A}(LRR) -9

Projections
00000000e

Pattern Databases: Chapter Overview

In the following, we will discuss:

m how to implement PDB heuristics
~> this chapter

m how to effectively make use of multiple PDB heuristics
~= Chapter D5

m how to find good patterns for PDB heuristics
~> Chapter D6

Implementing PDBs: Precomputation

®0000000

Implementing PDBs: Precomputation

Implementing PDBs: Precomputation nting PDBs: Lookup

0O@000000

Pattern Database Implementation

Assume we are given a pattern P for a planning task [I1.
How do we implement h"?

O In a precomputation step, we compute a graph representation
for the abstraction 7 ()™ and compute the abstract goal
distance for each abstract state.

@ During search, we use the precomputed abstract goal
distances in a lookup step.

Implementing PDBs: Precomputation nting PDBs: Lookup

[e]e] lele]elele)

Precomputation Step

Let 1 be a planning task and P a pattern.
Let 7=T7(MN) and 7' =T7".
= We want to compute a graph representation of 7.
m 7' is defined through an abstraction of T .
m For example, each concrete transition induces
an abstract transition.
m However, we cannot compute 7" by iterating
over all transitions of T .
m This would take time Q(||7).
m This is prohibitively long (or else we could solve the task
using uniform-cost search or similar techniques).
m Hence, we need a way of computing 7" in time
which is polynomial only in ||[1|| and || 77|

Implementing PDBs: Precomputation
000@0000

Summary

Syntactic Projections

Definition (Syntactic Projection)
Let M= (V,I,0,v) be an FDR planning task,
and let P C V be a subset of its variables.
The syntactic projection I|p of I to P is the FDR planning task
(P,1|p,{o|lp | 0 € O},7|p), where
m |p for formula ¢ is defined as the formula obtained from ¢
by replacing all atoms (v = d) with v ¢ P by T, and
m ol|p for operator o is defined by replacing all formulas ¢
occurring in the precondition or effect conditions of o with
©|p and all atomic effects (v := d) with v ¢ P with the
empty effect T.

Put simply, M|p throws away all information not pertaining
to variables in P.

Implementing PDBs: Precomputation
[e]e]eYo! Yelele]

Equivalence Theorem for Syntactic Projections

Theorem (Syntactic Projections vs. Projections)

Let T be a SAS™ task, and let P be a pattern for .
Then T(N|p) < T(M)™.

~~ exercises] I

Implementing PDBs: Precomputation nting PDBs: Lookup

[e]e]e]e]e] lele)

PDB Computation

Using the equivalence theorem, we can compute pattern databases
for SAS™ tasks I and patterns P:

Computing Pattern Databases

def compute-PDB(IM, P):
Compute M :=M|p.
Compute 7' := T ().
Perform a backward uniform-cost search from the goal
states of 7’ to compute all abstract goal distances.
PDB := a table containing all goal distances in T’
return PDB

The algorithm runs in polynomial time and space
in terms of ||| + |PDB|.

nting PDBs: Lookup

Implementing PDBs: Precomputation

[e]e]e]e]e]e] Jo)

Generalizations of the Equivalence Theorem

m The restriction to SAS™ tasks is necessary.
m We can slightly generalize the result if we allow general
negation-free formulas, but still forbid conditional effects.
m In that case, the weighted graph of 7()™" is isomorphic
to a subgraph of the weighted graph of 7(M|p).
m This means that we can use 7(I|p) to derive
an admissible estimate of h”.
m With negations in conditions or with conditional effects,
not even this weaker result holds.

Implementing PDBs: Precomputation nting PDBs: Lookup
0000000@

Going Beyond SAS™ Tasks

m Most practical implementations of PDB heuristics
are limited to SAS™ tasks (or modest generalizations).

m One way to avoid the issues with general FDR tasks
is to convert them to equivalent SAS™ tasks.

m However, most direct conversions can exponentially increase
the task size in the worst case.

~~ We will only consider SAS™ tasks in the chapters
dealing with pattern databases.

Implementing PDBs: Lookup

@0000

Implementing PDBs: Lookup

PDBs: Precomputation Implementing PDBs: Lookup
0®000

Lookup Step: Overview

m During search, the PDB is the only piece of information
necessary to represent h”. (It is not necessary to store
the abstract transition system itself at this point.)

m Hence, the space requirements for PDBs during search
are linear in the number of abstract states S’
there is one table entry for each abstract state.

m During search, hF(s) is computed by mapping
7p(s) to a natural number in the range {0,...,|S| — 1}
using a perfect hash function, then looking up
the table entry for this number.

g PDBs: Precomputation Implementing PDBs: Lookup
) 0000

Lookup Step: Algorithm

Let P = {v1,..., v} be the pattern.

m We assume that all variable domains are natural numbers
counted from 0, i.e., dom(v) = {0,1,..., |dom(v)| — 1}.

m Forall i € {1,...,k}, we precompute N; := HJ’;} |dom(v;)|.

Then we can look up heuristic values as follows:

Computing Pattern Database Heuristics

def PDB-heuristic(s):
index := Zf'(:l N;s(v;)
return PDB[index]

m This is a very fast operation: it can be performed in O(k).

m For comparison, most relaxation heuristics need time O(]|]])
per state.

Lookup Step: Example (1)

Abstraction induced by T{package,truck A}:

Imp\ menting PDBs: Precomputation Implementing PDBs: Lookup Summary

[e]e]e]e] }

Lookup Step: Example (2)

m P ={v;, v} with v; = package, v» = truck A.
m dom(v1) = {L,R,A,B} =~ {0,1,2,3}
m dom(w) ={L,R} ~ {0,1}

~ Ny =10, [dom(v))[=1, Ny = []}_; [dom(v;)| = 4
~ index(s) = 1- s(package) + 4 - s(truck A)
Pattern database:
abstract state | LL RL AL BL LR RR AR BR
index 0 1 2 3 4 5 6 7
value 2 0 2 1 2 0 1 1

[Je]

Summary

PDBs: Precomputation nting PDBs: Lookup Summary

oe

Summary

m Pattern database (PDB) heuristics are abstraction heuristics
based on projection to a subset of variables.
m For SAS™ tasks, they can easily be implemented
via syntactic projections of the task representation.
m PDBs are lookup tables that store heuristic values,
indexed by perfect hash values for projected states.
m PDB values can be looked up very fast,
in time O(k) for a projection to k variables.

	Projections and Pattern Database Heuristics
	

	Implementing PDBs: Precomputation
	

	Implementing PDBs: Lookup
	

	Summary
	

