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Transition Systems

Reminder from Chapter A3:

Definition (Transition System)
A transition system is a 6-tuple 7 = (S, L, c, T, sp, Sx) where
> S is a finite set of states,
» L is a finite set of (transition) labels,
> c: L — Rg’ is a label cost function,
> T CS x L xS isthe transition relation,
» 5o € S is the initial state, and
> S, C S is the set of goal states.
We say that 7 has the transition (s, ¢,s') if (s,¢,s') € T.
We also write this as s £> s’ or s — s’ when not interested in /.

Note: Transition systems are also called state spaces.
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Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.
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Mapping Planning Tasks to Transition Systems

Reminder from Chapter A3:

Definition (Transition System Induced by a Planning Task)

The planning task T = (V I, O,~) induces
the transition system 7 (M) = (S, L, ¢, T, sy, Sx), where

> S is the set of all states over state variables V/,

> [ is the set of operators O,

» c(o0) = cost(o) for all operators o € O,

> T ={(s,0,5') |s€S, oapplicable in's, s’ = s[o]},
» s5=1, and

>

S,={seS|sEn~}
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Tasks in Finite-Domain Representation

Notes:

> We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

> All concepts apply equally to propositional planning tasks.

» However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

P Useless states can hurt the efficiency of abstraction-based
algorithms.
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Example Task: One Package, Two Trucks

Reminder: Transition Systems

Example (One Package, Two Trucks)
Consider the following FDR planning task (V. I, O,~):
> V ={p, ta, tg} with
» dom(p) = {L,R,A,B}
» dom(ta) = dom(tg) = {L,R}
> /:{pi—> L, ta — R,tB'—>R}
> 0= {pICkupl,J ‘ i€ {A7 B}v./ € {L? R}}
U{drop;; | i € {A,B},j € {L,R}}
U {move;JJr | ie{A B}, ),/ € {L,R},j #j'}, where
> pickup;; = (ti=jAp=j,p:=i1l)
» drop; ;= (ti=jAp=1ip:=j,1)
> move; ;i = <t,' =, ti:=/, 1>

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition System of Example Task

> State {p > i,tpn — Jj, tg — k} is depicted as jjk.
> Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupy | .
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> v=(P=R)
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D2.2 Abstractions
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Abstractions

Definition (Abstraction)

Let T =(S,L,c, T,so,Ss) be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function o : S — 5% defined on the states of T,
where 5% is an arbitrary set.

Without loss of generality, we require that « is surjective.

Intuition: a maps the states of 7 to another (usually smaller)
abstract state space.
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Abstract Transition System

Definition (Abstract Transition System)
Let 7 =(S,L,c, T,so,Ss) be a transition system,
and let @ : S — S® be an abstraction of 7.
The abstract transition system induced by «, in symbols 7%,
is the transition system 7 = (5%, L, c, T%,sg, S¢) defined by:
> T = {{afs),l,a(t)) | (s,,t) € T}
> s = as0)
> 5S¢ ={a(s)[s € 5
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Concrete and Abstract State Space

Let 7 be a transition system and « be an abstraction of 7.
» T is called the concrete transition system.
> T is called the abstract transition system.

» Similarly: concrete/abstract state space,
concrete/abstract transition, etc.
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Abstraction: Example

concrete transition system
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Abstraction: Example

abstract transition system

O ALR ARL

@ o @

«—{BLL BRR}«—

BRL BLR

Note: Most arcs represent many parallel transitions.
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D2.3 Homomorphisms and
Isomorphisms
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Homomorphisms and Isomorphisms

» The abstraction mapping « that transforms 7 to 7¢
is also called a strict homomorphism from T to T¢.

» Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

» A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by «.

P> We only consider strict homomorphisms in this course.

> If « is bijective, it is called an isomorphism between T and
T<, and the two transition systems are called isomorphic.
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Isomorphic Transition Systems

The notion of isomorphic transition systems is important enough
to warrant a formal definition:

Definition (Isomorphic Transition Systems)

Let 7 =(S,L,c,T,s0,S5) and T = (S, L', ', T', s}, S,)

be transition systems.

We say that 7 is isomorphic to 7, in symbols 7 ~ T, if there
exist bijective functions ¢ : S — S" and A : L — L’ such that:

> sﬁteTifF@(s)ﬂw(t)eT’,

> (A¢)) =c(¢) forall £ € L,
> ©(sp) = sb, and
> se S, iff (s) € S..
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Graph-Equivalent Transition Systems

Sometimes a weaker notion of equivalence is useful:

Definition (Graph-Equivalent Transition Systems)
Let T =(S,L,c, T,s0,S5:) and T = (S, L', ', T', s}, S))
be transition systems.

We say that 7 is graph-equivalent to 77, in symbols 7 e
if there exists a bijective function ¢ : S — S’ such that:

> There is a transition s - t € T with c(l) = k iff
there is a transition ¢(s) N o(t) € T with /(¢') = k,

> ©(sp) = s, and

> se S, iff o(s) € S..

Note: The labels of 7 and 7’ do not matter except that
transitions of the same cost must be preserved.
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Isomorphism vs. Graph Equivalence

(~) and (E,) are equivalence relations.

vy

Two isomorphic transition systems are interchangeable
for all practical intents and purposes.

> Two graph-equivalent transition systems are interchangeable
for most intents and purposes.

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

D2.4 Abstraction Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 23 / 38

» In particular, their goal distances are identical.

» Isomorphism implies graph equivalence, but not vice versa.
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Abstraction Heuristics

Definition (Abstraction Heuristic)
Let @ : S — S be an abstraction of a transition system 7T .

The abstraction heuristic induced by «, written h%,
is the heuristic function h* : S — Rd U {oc} defined as

h*(s) = hra(a(s)) forallse S,
where h7-. denotes the goal distance function in 7.

Notes:
» h%(s) = oo if no goal state of 7 is reachable from «(s)

> We also apply abstraction terminology to planning tasks 1,
which stand for their induced transition systems.
For example, an abstraction of I1 is an abstraction of 7 (I1).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 24 / 38




D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Abstraction Heuristics: Example

o @@

@ :-®

pa({p=Lita—Rts—R}) _ 3
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Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h®)
Let o be an abstraction of a transition system T .
Then h“ is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let 7 =(S,L,c, T,s0,5).

Let 7% =(S* L,c, T s§,S2).

Goal-awareness: We need to show that h*(s) = 0 for all s € S,,
solet s € S,. Then a(s) € SZ by the definition of abstract
transition systems, and hence h*(s) = h3.(a(s)) = 0.
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Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h®(s) < c(¢) + h“(t).

By the definition of 7, we get a(s) EN a(t) e T

Hence, a(t) is a successor of a(s) in T% via the label /.

We get:
h(s) = hia((s))

c(€) + hra(a(t))

c(f) + h*(t),

where the inequality holds because perfect goal distances hxt.,

are consistent in 7%,

(The shortest path from a(s) to the goal in 7 cannot be longer

than the shortest path from a(s) to the goal via a(t).) O

AN
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D2.5 Coarsenings and Refinements

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 28 / 38




D2. Abstractions: Formal Definition and Heuristics

Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

» Using a first abstraction o : S — S’, map 7 to T°.
> Using a second abstraction 8: S’ — S”, map 7% to (T%)".

The result is the same as directly using the abstraction (5 o «):
> Let v:S — S” be defined as vy(s) = (8 o a)(s) = B(a(s)).
> Then 77 = (T)5.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization
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Abstractions of Abstractions: Example (1)

transition system T
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Abstractions of Abstractions: Example (2)

Transition system 7" as an abstraction of T
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Abstractions of Abstractions: Example (3)

RRL

ShD

RLR

Transition system 7" as an abstraction of 7’
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Abstractions of Abstractions: Example (3)

Transition system 7" as an abstraction of T
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Coarsenings and Refinements

Definition (Coarsening and Refinement)
Let o and «y be abstractions of the same transition system
such that v = 8 o a for some function .

Then ~ is called a coarsening of «
and « is called a refinement of ~.
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Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)
Let o« and ~y be abstractions of the same transition system
such that « is a refinement of 7.

Then h® dominates h”.

In other words, h7(s) < h%(s) < h*(s) for all states s.
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Heuristic Quality of Refinements: Proof

Proof.
Since « is a refinement of ~,
there exists a function 8 with v = S o a.

For all states s of 1, we get:

W (s) = hir (1(5))
— b (B(a(s)))
— h.(a(s))
< Kya(a(s))
= H(s),

S

where the inequality holds because h?ra is an admissible heuristic
in the transition system 7.
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D2.6 Summary
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Summary

Summary

» An abstraction is a function « that maps the states S
of a transition system to another (usually smaller) set S*.

» This induces an abstract transition system 7%, which behaves
like the original transition system 7 except that states
mapped to the same abstract state cannot be distinguished.

» Abstractions « induce abstraction heuristics h*: h*(s)
is the goal distance of a(s) in the abstract transition system.

» Abstraction heuristics are safe, goal-aware, admissible

and consistent.

P Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those

for coarser ones.
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