Planning and Optimization

D2. Abstractions: Formal Definition and Heuristics

Malte Helmert and Gabriele Roger

Universitat Basel

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

1/38

Planning and Optimiz

ation

— D2. Abstractions: Formal Definition and Heuristics

D2.1 Reminder: Transition Systems

D2.2 Abstractions

D2.3 Homomorphisms and Isomorphisms

M. Helmert, G. Roger (Universitat Basel)

D2.4 Abstraction Heuristics
D2.5 Coarsenings and Refinements

D2.6 Summary

Planning and Optimization

2 /38

Content of this Course

_I

Foundations |

_|

Logic |

_I

Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

3 /38

M. Helmert, G. Roger (Universitat Basel)

Content of this Course: Heuristics

Delete Relaxation |

Abstractions
in General

Abstraction |

Potential
Heuristics

Planning and Optimization

Pattern
Databases

—| Merge & Shrink

4/ 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

D2.1 Reminder: Transition Systems

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 5 /38

D2. Abstractions: Formal Definition and Heuristics

Transition Systems

Reminder from Chapter A3:

Definition (Transition System)
A transition system is a 6-tuple 7 = (S, L, c, T, sp, Sx) where
> S is a finite set of states,
» L is a finite set of (transition) labels,
> c: L — Rg’ is a label cost function,
> T CS x L xS isthe transition relation,
» 5o € S is the initial state, and
> S, C S is the set of goal states.
We say that 7 has the transition (s, ¢,s') if (s,¢,s') € T.
We also write this as s £> s’ or s — s’ when not interested in /.

Note: Transition systems are also called state spaces.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization 6/

Reminder: Transition Systems

38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 7/ 38

D2. Abstractions: Formal Definition and Heuristics

Mapping Planning Tasks to Transition Systems

Reminder from Chapter A3:

Definition (Transition System Induced by a Planning Task)

The planning task T = (V I, O,~) induces
the transition system 7 (M) = (S, L, ¢, T, sy, Sx), where

> S is the set of all states over state variables V/,

> [is the set of operators O,

» c(o0) = cost(o) for all operators o € O,

> T ={(s,0,5') |s€S, oapplicable in's, s’ = s[o]},
» s5=1, and

>

S,={seS|sEn~}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 8

Reminder: Transition Systems

/ 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Tasks in Finite-Domain Representation

Notes:

> We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

> All concepts apply equally to propositional planning tasks.

» However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

P Useless states can hurt the efficiency of abstraction-based
algorithms.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 9 /38

D2. Abstractions: Formal Definition and Heuristics

Example Task: One Package, Two Trucks

Reminder: Transition Systems

Example (One Package, Two Trucks)
Consider the following FDR planning task (V. I, O,~):
> V ={p, ta, tg} with
» dom(p) = {L,R,A,B}
» dom(ta) = dom(tg) = {L,R}
> /:{pi—> L, ta — R,tB'—>R}
> 0= {pICkupl,J ‘ i€ {A7 B}v./ € {L? R}}
U{drop;; | i € {A,B},j € {L,R}}
U {move;JJr | ie{A B},),/ € {L,R},j #j'}, where
> pickup;; = (ti=jAp=j,p:=i1l)
» drop; ;= (ti=jAp=1ip:=j,1)
> move; ;i = <t,' =, ti:=/, 1>

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition System of Example Task

> State {p > i,tpn — Jj, tg — k} is depicted as jjk.
> Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupy | .

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 11 /38

> v=(P=R)
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 10 / 38
D2. Abstractions: Formal Definition and Heuristics Abstractions

D2.2 Abstractions

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 12 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstractions

Definition (Abstraction)

Let T =(S,L,c, T,so,Ss) be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function o : S — 5% defined on the states of T,
where 5% is an arbitrary set.

Without loss of generality, we require that « is surjective.

Intuition: a maps the states of 7 to another (usually smaller)
abstract state space.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 13 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstract Transition System

Definition (Abstract Transition System)
Let 7 =(S,L,c, T,so,Ss) be a transition system,
and let @ : S — S® be an abstraction of 7.
The abstract transition system induced by «, in symbols 7%,
is the transition system 7 = (5%, L, c, T%,sg, S¢) defined by:
> T = {{afs),l,a(t)) | (s,,t) € T}
> s = as0)
> 5S¢ ={a(s)[s € 5

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 14 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Concrete and Abstract State Space

Let 7 be a transition system and « be an abstraction of 7.
» T is called the concrete transition system.
> T is called the abstract transition system.

» Similarly: concrete/abstract state space,
concrete/abstract transition, etc.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 15 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstraction: Example

concrete transition system

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 16 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstraction: Example

abstract transition system

O ALR ARL

@ o @

«—{BLL BRR}«—

BRL BLR

Note: Most arcs represent many parallel transitions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 17 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

D2.3 Homomorphisms and
Isomorphisms

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 18 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Homomorphisms and Isomorphisms

» The abstraction mapping « that transforms 7 to 7¢
is also called a strict homomorphism from T to T¢.

» Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

» A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by «.

P> We only consider strict homomorphisms in this course.

> If « is bijective, it is called an isomorphism between T and
T<, and the two transition systems are called isomorphic.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 19 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Isomorphic Transition Systems

The notion of isomorphic transition systems is important enough
to warrant a formal definition:

Definition (Isomorphic Transition Systems)

Let 7 =(S,L,c,T,s0,S5) and T = (S, L', ', T', s}, S,)

be transition systems.

We say that 7 is isomorphic to 7, in symbols 7 ~ T, if there
exist bijective functions ¢ : S — S" and A : L — L’ such that:

> sﬁteTifF@(s)ﬂw(t)eT’,

> (A¢)) =c(¢) forall £ € L,
> ©(sp) = sb, and
> se S, iff (s) € S..

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 20 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Graph-Equivalent Transition Systems

Sometimes a weaker notion of equivalence is useful:

Definition (Graph-Equivalent Transition Systems)
Let T =(S,L,c, T,s0,S5:) and T = (S, L', ', T', s}, S))
be transition systems.

We say that 7 is graph-equivalent to 77, in symbols 7 e
if there exists a bijective function ¢ : S — S’ such that:

> There is a transition s - t € T with c(l) = k iff
there is a transition ¢(s) N o(t) € T with /(¢') = k,

> ©(sp) = s, and

> se S, iff o(s) € S..

Note: The labels of 7 and 7’ do not matter except that
transitions of the same cost must be preserved.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 21 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Isomorphism vs. Graph Equivalence

(~) and (E,) are equivalence relations.

vy

Two isomorphic transition systems are interchangeable
for all practical intents and purposes.

> Two graph-equivalent transition systems are interchangeable
for most intents and purposes.

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

D2.4 Abstraction Heuristics

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 23 / 38

» In particular, their goal distances are identical.

» Isomorphism implies graph equivalence, but not vice versa.
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 22 / 38
D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Abstraction Heuristics

Definition (Abstraction Heuristic)
Let @ : S — S be an abstraction of a transition system 7T .

The abstraction heuristic induced by «, written h%,
is the heuristic function h* : S — Rd U {oc} defined as

h*(s) = hra(a(s)) forallse S,
where h7-. denotes the goal distance function in 7.

Notes:
» h%(s) = oo if no goal state of 7 is reachable from «(s)

> We also apply abstraction terminology to planning tasks 1,
which stand for their induced transition systems.
For example, an abstraction of I1 is an abstraction of 7 (I1).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 24 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Abstraction Heuristics: Example

o @@

@ :-®

pa({p=Lita—Rts—R}) _ 3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 25 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of h®)
Let o be an abstraction of a transition system T .
Then h“ is safe, goal-aware, admissible and consistent.

Proof.

We prove goal-awareness and consistency;

the other properties follow from these two.

Let 7 =(S,L,c, T,s0,5).

Let 7% =(S* L,c, T s§,S2).

Goal-awareness: We need to show that h*(s) = 0 for all s € S,,
solet s € S,. Then a(s) € SZ by the definition of abstract
transition systems, and hence h*(s) = h3.(a(s)) = 0.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 26 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s L tof T.
We need to show h®(s) < c(¢) + h“(t).

By the definition of 7, we get a(s) EN a(t) e T

Hence, a(t) is a successor of a(s) in T% via the label /.

We get:
h(s) = hia((s))

c(€) + hra(a(t))

c(f) + h*(t),

where the inequality holds because perfect goal distances hxt.,

are consistent in 7%,

(The shortest path from a(s) to the goal in 7 cannot be longer

than the shortest path from a(s) to the goal via a(t).) O

AN

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 27 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

D2.5 Coarsenings and Refinements

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 28 / 38

D2. Abstractions: Formal Definition and Heuristics

Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

» Using a first abstraction o : S — S’, map 7 to T°.
> Using a second abstraction 8: S’ — S”, map 7% to (T%)".

The result is the same as directly using the abstraction (5 o «):
> Let v:S — S” be defined as vy(s) = (8 o a)(s) = B(a(s)).
> Then 77 = (T)5.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Coarsenings and Refinements

29 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (1)

transition system T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 30 / 38

D2. Abstractions: Formal Definition and Heuristics

Abstractions of Abstractions: Example (2)

Transition system 7" as an abstraction of T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Coarsenings and Refinements

31 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (3)

RRL

ShD

RLR

Transition system 7" as an abstraction of 7’

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 32 /38

D2. Abstractions: Formal Definition and Heuristics

Abstractions of Abstractions: Example (3)

Transition system 7" as an abstraction of T

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Coarsenings and Refinements

33 /38

D2. Abstractions: Formal Definition and Heuristics

Coarsenings and Refinements

Definition (Coarsening and Refinement)
Let o and «y be abstractions of the same transition system
such that v = 8 o a for some function .

Then ~ is called a coarsening of «
and « is called a refinement of ~.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Coarsenings and Refinements

34 / 38

D2. Abstractions: Formal Definition and Heuristics

Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)
Let o« and ~y be abstractions of the same transition system
such that « is a refinement of 7.

Then h® dominates h”.

In other words, h7(s) < h%(s) < h*(s) for all states s.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Coarsenings and Refinements

35 / 38

D2. Abstractions: Formal Definition and Heuristics

Heuristic Quality of Refinements: Proof

Proof.
Since « is a refinement of ~,
there exists a function 8 with v = S o a.

For all states s of 1, we get:

W (s) = hir (1(5))
— b (B(a(s)))
— h.(a(s))
< Kya(a(s))
= H(s),

S

where the inequality holds because h?ra is an admissible heuristic
in the transition system 7.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Coarsenings and Refinements

36 / 38

D2. Abstractions: Formal Definition and Heuristics

D2.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Summary

37/

38

D2. Abstractions: Formal Definition and Heuristics

Summary

Summary

» An abstraction is a function « that maps the states S
of a transition system to another (usually smaller) set S*.

» This induces an abstract transition system 7%, which behaves
like the original transition system 7 except that states
mapped to the same abstract state cannot be distinguished.

» Abstractions « induce abstraction heuristics h*: h*(s)
is the goal distance of a(s) in the abstract transition system.

» Abstraction heuristics are safe, goal-aware, admissible

and consistent.

P Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those

for coarser ones.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization 38 /

/ 38

	Reminder: Transition Systems
	

	Abstractions
	

	Homomorphisms and Isomorphisms
	

	Abstraction Heuristics
	

	Coarsenings and Refinements
	

	Summary
	

