
Planning and Optimization
D2. Abstractions: Formal Definition and Heuristics

Malte Helmert and Gabriele Röger

Universität Basel

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 1 / 38

Planning and Optimization
— D2. Abstractions: Formal Definition and Heuristics

D2.1 Reminder: Transition Systems

D2.2 Abstractions

D2.3 Homomorphisms and Isomorphisms

D2.4 Abstraction Heuristics

D2.5 Coarsenings and Refinements

D2.6 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 2 / 38

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 3 / 38

Content of this Course: Heuristics

Heuristics

Delete Relaxation

Abstraction

Abstractions
in General

Pattern
Databases

Merge & Shrink

Constraints

Landmarks

Network
Flows

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 4 / 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

D2.1 Reminder: Transition Systems

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 5 / 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition Systems

Reminder from Chapter A3:

Definition (Transition System)

A transition system is a 6-tuple T = 〈S , L, c ,T , s0, S?〉 where

I S is a finite set of states,

I L is a finite set of (transition) labels,

I c : L→ R+
0 is a label cost function,

I T ⊆ S × L× S is the transition relation,

I s0 ∈ S is the initial state, and

I S? ⊆ S is the set of goal states.

We say that T has the transition 〈s, `, s ′〉 if 〈s, `, s ′〉 ∈ T .

We also write this as s
`−→ s ′, or s → s ′ when not interested in `.

Note: Transition systems are also called state spaces.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 6 / 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition Systems: Example

Note: To reduce clutter, our figures often omit arc labels and costs
and collapse transitions between identical states. However, these
are important for the formal definition of the transition system.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 7 / 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Mapping Planning Tasks to Transition Systems

Reminder from Chapter A3:

Definition (Transition System Induced by a Planning Task)

The planning task Π = 〈V , I ,O, γ〉 induces
the transition system T (Π) = 〈S , L, c ,T , s0,S?〉, where

I S is the set of all states over state variables V ,

I L is the set of operators O,

I c(o) = cost(o) for all operators o ∈ O,

I T = {〈s, o, s ′〉 | s ∈ S , o applicable in s, s ′ = sJoK},
I s0 = I , and

I S? = {s ∈ S | s |= γ}.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 8 / 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Tasks in Finite-Domain Representation

Notes:

I We will focus on planning tasks in finite-domain
representation (FDR) while studying abstractions.

I All concepts apply equally to propositional planning tasks.

I However, FDR tasks are almost always used by algorithms
in this context because they tend to have fewer useless
(physically impossible) states.

I Useless states can hurt the efficiency of abstraction-based
algorithms.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 9 / 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Example Task: One Package, Two Trucks

Example (One Package, Two Trucks)

Consider the following FDR planning task 〈V , I ,O, γ〉:
I V = {p, tA, tB} with

I dom(p) = {L,R,A,B}
I dom(tA) = dom(tB) = {L,R}

I I = {p 7→ L, tA 7→ R, tB 7→ R}
I O = {pickupi ,j | i ∈ {A,B}, j ∈ {L,R}}

∪ {dropi ,j | i ∈ {A,B}, j ∈ {L,R}}
∪ {movei ,j ,j ′ | i ∈ {A,B}, j , j ′ ∈ {L,R}, j 6= j ′}, where

I pickupi,j = 〈ti = j ∧ p = j , p := i , 1〉
I dropi,j = 〈ti = j ∧ p = i , p := j , 1〉
I movei,j,j′ = 〈ti = j , ti := j ′, 1〉

I γ = (p = R)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 10 / 38

D2. Abstractions: Formal Definition and Heuristics Reminder: Transition Systems

Transition System of Example Task

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

I State {p 7→ i , tA 7→ j , tB 7→ k} is depicted as ijk.

I Transition labels are again not shown. For example, the
transition from LLL to ALL has the label pickupA,L.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 11 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

D2.2 Abstractions

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 12 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstractions

Definition (Abstraction)

Let T = 〈S , L, c ,T , s0,S?〉 be a transition system.

An abstraction (also: abstraction function, abstraction mapping)
of T is a function α : S → Sα defined on the states of T ,
where Sα is an arbitrary set.

Without loss of generality, we require that α is surjective.

Intuition: α maps the states of T to another (usually smaller)
abstract state space.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 13 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstract Transition System

Definition (Abstract Transition System)

Let T = 〈S , L, c ,T , s0,S?〉 be a transition system,
and let α : S → Sα be an abstraction of T .

The abstract transition system induced by α, in symbols T α,
is the transition system T α = 〈Sα, L, c ,Tα, sα0 ,S

α
? 〉 defined by:

I Tα = {〈α(s), `, α(t)〉 | 〈s, `, t〉 ∈ T}
I sα0 = α(s0)

I Sα? = {α(s) | s ∈ S?}

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 14 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Concrete and Abstract State Space

Let T be a transition system and α be an abstraction of T .

I T is called the concrete transition system.

I T α is called the abstract transition system.

I Similarly: concrete/abstract state space,
concrete/abstract transition, etc.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 15 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstraction: Example

concrete transition system

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 16 / 38

D2. Abstractions: Formal Definition and Heuristics Abstractions

Abstraction: Example

abstract transition system

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

ARRALL

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Note: Most arcs represent many parallel transitions.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 17 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

D2.3 Homomorphisms and
Isomorphisms

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 18 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Homomorphisms and Isomorphisms

I The abstraction mapping α that transforms T to T α
is also called a strict homomorphism from T to T α.

I Roughly speaking, in mathematics a homomorphism
is a property-preserving mapping between structures.

I A strict homomorphism is one where no additional features
are introduced. A non-strict homomorphism in planning
would mean that the abstract transition system may include
additional transitions and goal states not induced by α.

I We only consider strict homomorphisms in this course.

I If α is bijective, it is called an isomorphism between T and
T α, and the two transition systems are called isomorphic.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 19 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Isomorphic Transition Systems

The notion of isomorphic transition systems is important enough
to warrant a formal definition:

Definition (Isomorphic Transition Systems)

Let T = 〈S , L, c ,T , s0,S?〉 and T ′ = 〈S ′, L′, c ′,T ′, s ′0, S ′?〉
be transition systems.

We say that T is isomorphic to T ′, in symbols T ∼ T ′, if there
exist bijective functions ϕ : S → S ′ and λ : L→ L′ such that:

I s
`−→ t ∈ T iff ϕ(s)

λ(`)−−→ ϕ(t) ∈ T ′,

I c ′(λ(`)) = c(`) for all ` ∈ L,

I ϕ(s0) = s ′0, and

I s ∈ S? iff ϕ(s) ∈ S ′?.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 20 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Graph-Equivalent Transition Systems

Sometimes a weaker notion of equivalence is useful:

Definition (Graph-Equivalent Transition Systems)

Let T = 〈S , L, c ,T , s0,S?〉 and T ′ = 〈S ′, L′, c ′,T ′, s ′0, S ′?〉
be transition systems.

We say that T is graph-equivalent to T ′, in symbols T G∼ T ′,
if there exists a bijective function ϕ : S → S ′ such that:

I There is a transition s
`−→ t ∈ T with c(`) = k iff

there is a transition ϕ(s)
`′−→ ϕ(t) ∈ T ′ with c ′(`′) = k,

I ϕ(s0) = s ′0, and

I s ∈ S? iff ϕ(s) ∈ S ′?.

Note: The labels of T and T ′ do not matter except that
transitions of the same cost must be preserved.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 21 / 38

D2. Abstractions: Formal Definition and Heuristics Homomorphisms and Isomorphisms

Isomorphism vs. Graph Equivalence

I (∼) and (
G∼) are equivalence relations.

I Two isomorphic transition systems are interchangeable
for all practical intents and purposes.

I Two graph-equivalent transition systems are interchangeable
for most intents and purposes.

I In particular, their goal distances are identical.

I Isomorphism implies graph equivalence, but not vice versa.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 22 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

D2.4 Abstraction Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 23 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Abstraction Heuristics

Definition (Abstraction Heuristic)

Let α : S → Sα be an abstraction of a transition system T .

The abstraction heuristic induced by α, written hα,
is the heuristic function hα : S → R+

0 ∪ {∞} defined as

hα(s) = h∗T α(α(s)) for all s ∈ S ,

where h∗T α denotes the goal distance function in T α.

Notes:

I hα(s) =∞ if no goal state of T α is reachable from α(s)

I We also apply abstraction terminology to planning tasks Π,
which stand for their induced transition systems.
For example, an abstraction of Π is an abstraction of T (Π).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 24 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Abstraction Heuristics: Example

LRR

LLR

LLL

LRL

LLR

LRL

LLL

ALR ARL

ALL ARR

BLL

BRL

BRR

BLR

ALR ARL

ARRALL

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

hα({p 7→L,tA 7→R,tB 7→R}) = 3

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 25 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Consistency of Abstraction Heuristics (1)

Theorem (Consistency and Admissibility of hα)

Let α be an abstraction of a transition system T .
Then hα is safe, goal-aware, admissible and consistent.

Proof.
We prove goal-awareness and consistency;
the other properties follow from these two.

Let T = 〈S , L, c ,T , s0,S?〉.
Let T α = 〈Sα, L, c ,Tα, sα0 , S

α
? 〉.

Goal-awareness: We need to show that hα(s) = 0 for all s ∈ S?,
so let s ∈ S?. Then α(s) ∈ Sα? by the definition of abstract
transition systems, and hence hα(s) = h∗T α(α(s)) = 0. . . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 26 / 38

D2. Abstractions: Formal Definition and Heuristics Abstraction Heuristics

Consistency of Abstraction Heuristics (2)

Proof (continued).

Consistency: Consider any state transition s
`−→ t of T .

We need to show hα(s) ≤ c(`) + hα(t).

By the definition of T α, we get α(s)
`−→ α(t) ∈ Tα.

Hence, α(t) is a successor of α(s) in T α via the label `.

We get:

hα(s) = h∗T α(α(s))
≤ c(`) + h∗T α(α(t))
= c(`) + hα(t),

where the inequality holds because perfect goal distances h∗T α

are consistent in T α.
(The shortest path from α(s) to the goal in T α cannot be longer
than the shortest path from α(s) to the goal via α(t).)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 27 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

D2.5 Coarsenings and Refinements

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 28 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions

Since abstractions map transition systems to transition systems,
they are composable:

I Using a first abstraction α : S → S ′, map T to T α.

I Using a second abstraction β : S ′ → S ′′, map T α to (T α)β.

The result is the same as directly using the abstraction (β ◦ α):

I Let γ : S → S ′′ be defined as γ(s) = (β ◦ α)(s) = β(α(s)).

I Then T γ = (T α)β.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 29 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (1)

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

transition system T

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 30 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (2)

LRR

LRL

LRR

LRL

LLL

LLRLLR

LLL

ALR

ALL

ALR

ALL

ARL

ARR

ARL

ARR

BRR

BLL BLR

BRL

BLL BLR

BRL BRR

RRR

RRLRRL

RRR

RLR

RLLRLL

RLR

Transition system T ′ as an abstraction of T

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 31 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (3)

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BLR

BRR

BLL BLR

BRRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T ′

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 32 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Abstractions of Abstractions: Example (3)

LRR LLL

LLR

LRL

LRR

LLR

LRL

LLL

ALR ARL

ALL ARR

ALR ARL

ARRALL

BLL

BRL

BRR

BLR

BLL BRR

BLRBRL

RRR

RRL

RLR

RLLRLL

RRL

RLR

RRR

Transition system T ′′ as an abstraction of T

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 33 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Coarsenings and Refinements

Definition (Coarsening and Refinement)

Let α and γ be abstractions of the same transition system
such that γ = β ◦ α for some function β.

Then γ is called a coarsening of α
and α is called a refinement of γ.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 34 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Heuristic Quality of Refinements

Theorem (Heuristic Quality of Refinements)

Let α and γ be abstractions of the same transition system
such that α is a refinement of γ.

Then hα dominates hγ .

In other words, hγ(s) ≤ hα(s) ≤ h∗(s) for all states s.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 35 / 38

D2. Abstractions: Formal Definition and Heuristics Coarsenings and Refinements

Heuristic Quality of Refinements: Proof

Proof.
Since α is a refinement of γ,
there exists a function β with γ = β ◦ α.

For all states s of Π, we get:

hγ(s) = h∗T γ (γ(s))

= h∗T γ (β(α(s)))

= hβT α(α(s))

≤ h∗T α(α(s))

= hα(s),

where the inequality holds because hβT α is an admissible heuristic
in the transition system T α.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 36 / 38

D2. Abstractions: Formal Definition and Heuristics Summary

D2.6 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 37 / 38

D2. Abstractions: Formal Definition and Heuristics Summary

Summary

I An abstraction is a function α that maps the states S
of a transition system to another (usually smaller) set Sα.

I This induces an abstract transition system T α, which behaves
like the original transition system T except that states
mapped to the same abstract state cannot be distinguished.

I Abstractions α induce abstraction heuristics hα: hα(s)
is the goal distance of α(s) in the abstract transition system.

I Abstraction heuristics are safe, goal-aware, admissible
and consistent.

I Abstractions can be composed, leading to coarser vs. finer
abstractions. Heuristics for finer abstractions dominate those
for coarser ones.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 38 / 38

	Reminder: Transition Systems
	

	Abstractions
	

	Homomorphisms and Isomorphisms
	

	Abstraction Heuristics
	

	Coarsenings and Refinements
	

	Summary
	

