Planning and Optimization
D1. Abstractions: Introduction

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

% Foundations |

~| Logic |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

Content of this Course: Heuristics

Abstractions

Delete Relaxation ‘ 1 .
in General

7 Pattern
Abstraction I
Databases

—{ Merge & Shrink

Potential
Heuristics

Introduction
©000000

Introduction

Introduction
0@00000

Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

delete relaxation
abstraction
landmarks
critical paths
network flows

potential heuristics

Heuristics based on abstraction are among the most prominent
techniques for optimal planning.

Introduction >ractical Requirements e Abstractions Outlook
00®0000 © 5

Abstracting a Transition System

Abstracting a transition system means dropping some distinctions
between states, while preserving the transition behaviour as much
as possible.
m An abstraction of a transition system 7 is defined by an
abstraction mapping « that defines which states of 7
should be distinguished and which ones should not.

m From 7 and o, we compute an abstract transition system 7
which is similar to 7, but smaller.

m The abstract goal distances (goal distances in 7¢)
are used as heuristic estimates for goal distances in 7T .

Introduction > ical Requirements M Abstractions Outlook

[e]e]e] le]ele)

Abstracting a Transition System: Example

Example (15-Puzzle)

A 15-puzzle state is given by a permutation (b, t1,..., t15)
of {1,...,16}, where b denotes the blank position
and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8-15, i.e., two states are distinguished iff they differ
in the position of the blank or one of the tiles 1-7:

a((b, t1,..., t15>) = <b, t1,..., t7>

The heuristic values for this abstraction correspond to the cost
of moving tiles 1-7 to their goal positions.

Introduction Practical Requirements e Abstractions Outlook
0000e00 [e]e]e) [o]e]

Abstraction Example: 15-Puzzle

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 4 1 11 9 10 | 11 | 12

2o -

real state space:
m 16! = 20922789888000 ~ 2 - 10'3 states

] 176! — 10461394944000 ~ 1013 reachable states

Introduction Practical Requirements Outlook
0000000 oc0cO 00000 00

Abstraction Example: 15-Puzzle

2 6 1 2 3
5 7 5 6 7
3 4 1

abstract state space:
m 16-15-...-9=518918400 ~ 5 - 102 states
m16-15-...-9 =518918400 ~ 5 - 102 reachable states

Summary

Introduction >ractical Requirements e Abstractions Outlook
000000 © 5) 00

Computing the Abstract Transition System

Given T and «, how do we compute 77

Requirement

We want to obtain an admissible heuristic.
Hence, h*(«(s)) (in the abstract state space 7°) should never
overestimate h*(s) (in the concrete state space 7).

An easy way to achieve this is to ensure that all solutions in T
are also present in T
m If s is a goal state in T, then «(s) is a goal state in 7.

m If 7 has a transition from s to t, then 7
has a transition from a(s) to «a(t).

Introduction Practical Requirements Multiple Abstractions Outlook Summary
000000e 000 [e)e) 00

Computing the Abstract Transition System: Example

Example (15-Puzzle)

In the running example:
m 7 has the unique goal state (16,1,2,...,15).
~> T has the unique goal state (16,1,2,...,7).

m Let x and y be neighbouring positions in the 4 x 4 grid.
T has a transition from <X, t,...,ti—1,Y, tiv1,-- ., t15>
to (y, t,..., ti—1, X, tiv1, ..., t15> for all i € {1, ce 15}.

~» T has a transition from (x, t1,...,ti_1,¥, tit1,...,t7)
to <y, t,...,ti—1, X, tig1,-- -, t7> for all i € {1, R ,7}.
~» Moreover, T has a transition from (x, ti, ..., t7)
to (y,t1,....t7) ify & {t1,..., t7}.

Practical Requirements

Introduction Practical Requirements Multiple Abstractions Outlook Summary

Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be efficiently
computable. This gives us two requirements for a:

m For a given state s, the abstract state a(s)
must be efficiently computable.

m For a given abstract state a(s), the abstract goal distance
h*(a(s)) must be efficiently computable.

There are a number of ways of achieving these requirements:
m pattern database heuristics (Culberson & Schaeffer, 1996)

m merge-and-shrink abstractions (Drager, Finkbeiner &
Podelski, 2006)

m Cartesian abstractions (Ball, Podelski & Rajamani, 2001)
m structural patterns (Katz & Domshlak, 2008b)

Practical Requirements \Y Abstractions Outlook

ee]

Practical Requirements for Abstractions: Example

Example (15-Puzzle)

In our running example, a can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
the most common approach is to precompute all abstract goal
distances prior to search by performing a backward uniform-cost
search from the abstract goal state(s). These distances are then
stored in a table (requires ~ 495 MiB RAM).

During search, computing h*(«(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.

Multiple Abstractions

[Jelele]e}

Multiple Abstractions

cal Requirements Multiple Abstractions Outlook
00000

Multiple Abstractions

m One important practical question is how to come up
with a suitable abstraction mapping a.

m Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

m However, it is generally not necessary to commit
to a single abstraction.

ical Requirements Multiple Abstractions Outlook Summary

[e]e] le]e}

Combining Multiple Abstractions

Maximizing several abstractions:
m Each abstraction mapping gives rise to an admissible heuristic.

m By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

m Thus, we can always compute several abstractions and
maximize over the individual abstract goal distances.

Adding several abstractions:
m In some cases, we can even compute the sum
of individual estimates and still stay admissible.
m Summation often leads to much higher estimates

than maximization, so it is important to understand
under which conditions summation of heuristics is admissible.

tical Requirements Multiple Abstractions Outlook
000@0

Maximizing Several Abstractions: Example

Example (15-Puzzle)

B mapping to tiles 1-7 was arbitrary
~> can use any subset of tiles

m with the same amount of memory required for the tables
for the mapping to tiles 1-7, we could store the tables
for nine different abstractions to six tiles and the blank

m use maximum of individual estimates

Introduction

Practical Requirements

Adding Sev
9 | 2 [12] 6
5 | 7 | 14 | 13
3 4 1 11
15 | 10 8 .

m 1st abstraction: ignore precise location of 8-15

m 2nd abstraction: ignore precise location of 1-7

Multiple Abstractions

[e]e]ee] }

eral Abstractions: Example

Outlook

9 2 12 6
5 7 14 | 13
3 4 1 11
15 | 10 8 .

~~ |s the sum of the abstraction heuristics admissible?

Summary

Introduction Practical Requirements Multiple Abstractions

0000000 000 [e]e]ee] }

Adding Several Abstractions: Example

Outlook Summary

2 6 9 12
5 7 14 | 13
3 4 1 11

15

10

-l

m 1st abstraction: ignore precise location of 8-15

m 2nd abstraction: ignore precise location of 1-7

~~ The sum of the abstraction heuristics is not admissible.

Multiple Abstractions
0000®

m 1st abstraction: ignore precise location of 8-15 and blank
m 2nd abstraction: ignore precise location of 1-7 and blank

~~ The sum of the abstraction heuristics is admissible.

[1o}

Outlook

tical Requirements e Abstractions Outlook
5 oe

Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions
and their use for admissible heuristics.

In Chapters D2-D3, we formally introduce
abstractions and abstraction heuristics
and study some of their most important properties.

Afterwards, we discuss some particular classes
of abstraction heuristics in detail, namely

m pattern database heuristics (D4-D6) and
m merge-and-shrink abstractions (D7-D8).

[Je]

Summary

Abstractions Outlook Summary

oe

Summary

m Abstraction is one of the principled ways of deriving heuristics
for planning tasks and transition systems in general.

m The key idea is to map states to a smaller abstract transition
system 7 by means of an abstraction function a.

m Goal distances in 7“ are then used as admissible estimates
for goal distances in the original transition system.

m To be practical, we must be able to compute abstraction
functions and determine abstract goal distances efficiently.

m Often, multiple abstractions are used.
They can always be maximized admissibly.

m Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.

	Introduction
	

	Practical Requirements
	

	Multiple Abstractions
	

	Outlook
	

	Summary
	

