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Coming Up with Heuristics in a Principled Way

General Procedure for Obtaining a Heuristic
Solve a simplified version of the problem.

Major ideas for heuristics in the planning literature:

delete relaxation
abstraction
landmarks
critical paths
network flows

potential heuristics

Heuristics based on abstraction are among the most prominent
techniques for optimal planning.
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Abstracting a Transition System

Abstracting a transition system means dropping some distinctions
between states, while preserving the transition behaviour as much
as possible.
m An abstraction of a transition system 7 is defined by an
abstraction mapping « that defines which states of 7
should be distinguished and which ones should not.

m From 7 and o, we compute an abstract transition system 7
which is similar to 7, but smaller.

m The abstract goal distances (goal distances in 7¢)
are used as heuristic estimates for goal distances in 7T .
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Abstracting a Transition System: Example

Example (15-Puzzle)

A 15-puzzle state is given by a permutation (b, t1,..., t15)
of {1,...,16}, where b denotes the blank position
and the other components denote the positions of the 15 tiles.

One possible abstraction mapping ignores the precise location
of tiles 8-15, i.e., two states are distinguished iff they differ
in the position of the blank or one of the tiles 1-7:

a((b, t1,..., t15>) = <b, t1,..., t7>

The heuristic values for this abstraction correspond to the cost
of moving tiles 1-7 to their goal positions.
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Abstraction Example: 15-Puzzle

9 2 12 6 1 2 3 4
5 7 14 | 13 5 6 7 8
3 4 1 11 9 10 | 11 | 12

2o -

real state space:
m 16! = 20922789888000 ~ 2 - 10'3 states

] 176! — 10461394944000 ~ 1013 reachable states




Introduction Practical Requirements Outlook
0000000 oc0cO 00000 00

Abstraction Example: 15-Puzzle

2 6 1 2 3
5 7 5 6 7
3 4 1

abstract state space:
m 16-15-...-9=518918400 ~ 5 - 102 states
m16-15-...-9 =518918400 ~ 5 - 102 reachable states

Summary
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Computing the Abstract Transition System

Given T and «, how do we compute 77

Requirement

We want to obtain an admissible heuristic.
Hence, h*(«(s)) (in the abstract state space 7°) should never
overestimate h*(s) (in the concrete state space 7).

An easy way to achieve this is to ensure that all solutions in T
are also present in T
m If s is a goal state in T, then «(s) is a goal state in 7.

m If 7 has a transition from s to t, then 7
has a transition from a(s) to «a(t).
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Computing the Abstract Transition System: Example

Example (15-Puzzle)

In the running example:
m 7 has the unique goal state (16,1,2,...,15).
~> T has the unique goal state (16,1,2,...,7).

m Let x and y be neighbouring positions in the 4 x 4 grid.
T has a transition from <X, t,...,ti—1,Y, tiv1,-- ., t15>
to (y, t,..., ti—1, X, tiv1, ..., t15> for all i € {1, ce 15}.

~» T has a transition from (x, t1,...,ti_1,¥, tit1,...,t7)
to <y, t,...,ti—1, X, tig1,-- -, t7> for all i € {1, R ,7}.
~» Moreover, T has a transition from (x, ti, ..., t7)
to (y,t1,....t7) ify & {t1,..., t7}.
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Practical Requirements for Abstractions

To be useful in practice, an abstraction heuristic must be efficiently
computable. This gives us two requirements for a:

m For a given state s, the abstract state a(s)
must be efficiently computable.

m For a given abstract state a(s), the abstract goal distance
h*(a(s)) must be efficiently computable.

There are a number of ways of achieving these requirements:
m pattern database heuristics (Culberson & Schaeffer, 1996)

m merge-and-shrink abstractions (Drager, Finkbeiner &
Podelski, 2006)

m Cartesian abstractions (Ball, Podelski & Rajamani, 2001)
m structural patterns (Katz & Domshlak, 2008b)
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Practical Requirements for Abstractions: Example

Example (15-Puzzle)

In our running example, a can be very efficiently computed:
just project the given 16-tuple to its first 8 components.

To compute abstract goal distances efficiently during search,
the most common approach is to precompute all abstract goal
distances prior to search by performing a backward uniform-cost
search from the abstract goal state(s). These distances are then
stored in a table (requires ~ 495 MiB RAM).

During search, computing h*(«(s)) is just a table lookup.

This heuristic is an example of a pattern database heuristic.
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Multiple Abstractions
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Multiple Abstractions

m One important practical question is how to come up
with a suitable abstraction mapping a.

m Indeed, there is usually a huge number of possibilities,
and it is important to pick good abstractions
(i.e., ones that lead to informative heuristics).

m However, it is generally not necessary to commit
to a single abstraction.
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Combining Multiple Abstractions

Maximizing several abstractions:
m Each abstraction mapping gives rise to an admissible heuristic.

m By computing the maximum of several admissible heuristics,
we obtain another admissible heuristic which dominates
the component heuristics.

m Thus, we can always compute several abstractions and
maximize over the individual abstract goal distances.

Adding several abstractions:
m In some cases, we can even compute the sum
of individual estimates and still stay admissible.
m Summation often leads to much higher estimates

than maximization, so it is important to understand
under which conditions summation of heuristics is admissible.
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Maximizing Several Abstractions: Example

Example (15-Puzzle)

B mapping to tiles 1-7 was arbitrary
~> can use any subset of tiles

m with the same amount of memory required for the tables
for the mapping to tiles 1-7, we could store the tables
for nine different abstractions to six tiles and the blank

m use maximum of individual estimates
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Adding Sev
9 | 2 [12] 6
5 | 7 | 14 | 13
3 4 1 11
15 | 10 8 .

m 1st abstraction: ignore precise location of 8-15

m 2nd abstraction: ignore precise location of 1-7

Multiple Abstractions
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Outlook

9 2 12 6
5 7 14 | 13
3 4 1 11
15 | 10 8 .

~~ |s the sum of the abstraction heuristics admissible?

Summary
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Adding Several Abstractions: Example

Outlook Summary

2 6 9 12
5 7 14 | 13
3 4 1 11

15

10

-l

m 1st abstraction: ignore precise location of 8-15

m 2nd abstraction: ignore precise location of 1-7

~~ The sum of the abstraction heuristics is not admissible.
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m 1st abstraction: ignore precise location of 8-15 and blank
m 2nd abstraction: ignore precise location of 1-7 and blank

~~ The sum of the abstraction heuristics is admissible.
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Our Plan for the Next Lectures

In the following, we take a deeper look at abstractions
and their use for admissible heuristics.

In Chapters D2-D3, we formally introduce
abstractions and abstraction heuristics
and study some of their most important properties.

Afterwards, we discuss some particular classes
of abstraction heuristics in detail, namely

m pattern database heuristics (D4-D6) and
m merge-and-shrink abstractions (D7-D8).
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Summary

m Abstraction is one of the principled ways of deriving heuristics
for planning tasks and transition systems in general.

m The key idea is to map states to a smaller abstract transition
system 7 by means of an abstraction function a.

m Goal distances in 7“ are then used as admissible estimates
for goal distances in the original transition system.

m To be practical, we must be able to compute abstraction
functions and determine abstract goal distances efficiently.

m Often, multiple abstractions are used.
They can always be maximized admissibly.

m Adding abstraction heuristics is not always admissible.
When it is, it leads to a stronger heuristic than maximizing.
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