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Motivation

m In this chapter, we analyze the behaviour
of h™@* and h?9d more deeply.

m Our goal is to understand their shortcomings and
use this understanding to devise an improved heuristic.

m As a preparation for our analysis, we need some further
definitions that concern choices in AND/OR graphs.

m The key observation is that if we want to establish the value of

a certain node n, we can to some extent choose how we want
to achieve the OR nodes that are relevant to achieving n.
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Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node
but node values may not change.
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Preview: Choice Function & Best Achievers

Preserve at most one outgoing arc of each OR node
but node values may not change.

(precondition of o modified to ¢V (aV b))
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Choice Functions

Definition (Choice Function)
Let G be an AND/OR graph with nodes N and OR nodes Nog.

A choice function for G is a function f : N’ — N defined on
some set N’ C Npg such that f(n) € succ(n) for all n € N'.

= In words, choice functions select (at most)
one successor for each OR node of G.

m Intuitively, f(n) selects by which disjunct n is achieved.

m If f(n) is undefined for a given n, the intuition is
that n is not achieved.
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Reduced Graphs

Once we have decided how to achieve an OR node,
we can remove the other alternatives:

Definition (Reduced Graph)

Let G be an AND/OR graph, and let f be a choice function
for G defined on nodes N\'.

The reduced graph for f is the subgraph of G
where all outgoing arcs of OR nodes are removed
except for the chosen arcs (n, f(n)) with n € N'.
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Choice Functions Induced by h™> and kA

F Heuristic

Which choices do h™2% and h?94 make?

m At every OR node n, we set the cost of n
to the minimum of the costs of the successors of n.

m The motivation for this is to achieve n via the successor that
can be achieved most cheaply according to our cost estimates.

~> This corresponds to defining a choice function f
with f(n) € arg min,cp n'.cost for all reached OR nodes n,
where N’ C succ(n) are all successors of n processed before n.
m The successors chosen by this cost function are called
best achievers (according to h™® or h2dd).

m Note that the best achiever function f is in general
not well-defined because there can be multiple minimizers.
We assume that ties are broken arbitrarily.
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Example: Best Achievers (1)

best achievers for h?dd
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Example: Best Achievers (1)

best achievers for h?dd
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Example: Best Achievers (2)

best achievers for h*4d; modified goal e V (g A h)
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Example: Best Achievers (2)

best achievers for h*4d; modified goal e V (g A h)
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Best Achiever Graphs

m Observation: The h™#/h2dd costs of nodes remain the same
if we replace the RTG by the reduced graph for the respective
best achiever function.

m The AND/OR graph that is obtained by removing

all nodes with infinite cost from this reduced graph
is called the best achiever graph for AMax /p2dd,

m We write G™* and G299 for the best achiever graphs.

m G (G299) is always acyclic: for all arcs (n, n’) it contains,
n is processed by h™3 (by h2dd) after n'.
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Paths in Best Achiever Graphs

Let n be a node of the best achiever graph.

Let N be the set of effect nodes of the best achiever graph.
The cost of an effect node is the cost of the associated operator.
The cost of a path in the best achiever graph is the sum of costs
of all effect nodes on the path.

The following properties can be shown by induction:
m h™(n) is the maximum cost of all paths originating from n in
G™@*_ A path achieving this maximum is called a critical path.
m h2%d(n) is the sum, over all effect nodes n’, of the cost of n’
multiplied by the number of paths from n to n’ in G299,
In particular, these properties hold for the goal node n,
if it is reachable.
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Example: Undercounting in hM®*

G™#*: undercounting in hM




Best Achievers
00000080

Example: Undercounting in hM®*

G™#*: undercounting in hM

~> 01 and o4 not counted because they are off the critical path
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Example: Overcounting in A%

Gadd.

: overcounting in h24d
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Example: Overcounting in A%

G294 overcounting in h29d

~ 09 counted twice because there are two paths to n;
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Example: Overcounting in A%

G294 overcounting in h29d

~ 09 counted twice because there are two paths to n;
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Inaccuracies in h™2* and h24d

m h™® is often inaccurate because it undercounts:
the heuristic estimate only reflects the cost of a critical path,
which is often only a small fraction of the overall plan.

m h?4d is often inaccurate because it overcounts:
if the same subproblem is reached in many ways, it will be
counted many times although it only needs to be solved once.
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The FF Heuristic

Fortunately, with the perspective of best achiever graphs,
there is a simple solution: count all effect nodes that h2dd
would count, but only count each of them once.

Definition (FF Heuristic)

Let M= (V,I,O,~) be a propositional planning task
in positive normal form. The FF heuristic for a state s of 1,
written h7(s), is computed as follows:

m Construct the RTG for the task (V,s, OT, 7).

m Construct the best achiever graph G249,

m Compute the set of effect nodes {n}, ..., n3<}
reachable from n., in G2

m Return hFF(s) = Zf—‘zl cost(o;).

Note: hFF is not well-defined; different tie-breaking policies
for best achievers can lead to different heuristic values
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Example: FF Heuristic (1)

FF heuristic computation
+1 +1

Construct RTG.
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Example: FF Heuristic (1)

FF heuristic computation

Construct best achiever graph G249,
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Example: FF Heuristic (1)

FF heuristic computation

Compute effect nodes reachable from goal node.
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Example: FF Heuristic (1)

FF heuristic computation

hFF(s)=1+1+2+14+1=6
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)
+1 +1

Construct RTG.
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)

Construct best achiever graph G249,
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)

Compute effect nodes reachable from goal node.
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Example: FF Heuristic (2)

FF heuristic computation; modified goal e V (g A h)
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Optimal Delete Relaxation Heuristic

Definition (h™ Heuristic)
Let I be a propositional planning task in positive normal form,

and let s be a state of 1.

The optimal delete relaxation heuristic for s, written h+(s),
is defined as the perfect heuristic h*(s) of state s
in the delete-relaxed task M.

m Reminder: We proved that h'*(s) is hard to compute.
(BCPLANEX is NP-complete for delete-relaxed tasks.)

m The optimal delete relaxation heuristic is often used
as a reference point for comparison.
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Relationships between Delete Relaxation Heuristics (1)

Theorem

Let T1 be a propositional planning task in positive normal form,
and let s be a state of T1.

Then:
o hmax(s) < h+(s) < hFF(S) < hadd(s)
Q@ h™*(s) = oo iff h*(s) = oo iff F(s) = oo iff h?99(s) = oo
© h™> and h* are admissible and consistent.
Q hF and h? are neither admissible nor consistent.

© All four heuristics are safe and goal-aware.
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Relationships between Delete Relaxation Heuristics (2)

Proof Sketch.

for 1:

m To show h™®(s) < h'(s), show that critical path costs can
be defined for arbitrary relaxed plans and that the critical path
cost of a plan is never larger than the cost of the plan.

Then show that h™®*(s) computes the minimal critical path
cost over all delete-relaxed plans.

m To show h™(s) < hFF(s), prove that the operators belonging
to the effect nodes counted by hFF form a relaxed plan.

No relaxed plan is cheaper than h™ by definition of ht.

m hFF(s) < h?49(s) is obvious from the description of hFF:
both heuristics count the same operators,
but h*94 may count some of them multiple times.
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Relationships between Delete Relaxation Heuristics (3)

Proof Sketch (continued).

for 2:
for 3:

for 4:
for 5:

all heuristics are infinite iff the task has no relaxed solution

follows from hM2*(s) < h™(s)
because we already know that h™ is admissible

construct a counterexample to admissibility for hFF

goal-awareness is easy to show; safety follows from 2.4-3.
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F Heuristic ! 29¢ vs Vs Summary

Summary

h™2 and h294 can be used to decide how to achieve OR nodes
in a relaxed task graph ~» best achievers
Best achiever graphs help identify shortcomings of A™#* and
h?dd compared to the perfect delete relaxation heuristic ht.
m h™> underestimates h™ because it only considers the cost
of a critical path for the relaxed planning task.
m 1?4 overestimates ht because it double-counts operators
occurring on multiple paths in the best achiever graph.
m The FF heuristic repairs this flaw of h24d
and therefore approximates h™ more closely.

In general, hM2%(s) < ht(s) < AFF(s) < A2dd(s).
h™2% and ht are admissible: AT and ~299 are not.
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Literature Pointers

(Some) delete-relaxation heuristics in the planning literature:
m additive heuristic h?4d (Bonet, Loerincs & Geffner, 1997)
m maximum heuristic h™** (Bonet & Geffner, 1999)

(original) FF heuristic (Hoffmann & Nebel, 2001)

cost-sharing heuristic h* (Mirkis & Domshlak, 2007)

set-additive heuristics h*® (Keyder & Geffner, 2008)

FF/additive heuristic i (Keyder & Geffner, 2008)

local Steiner tree heuristic h'st (Keyder & Geffner, 2009)

~> also hybrids such as semi-relaxed heuristics
and delete-relaxation landmark heuristics
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