Planning and Optimization
C5. Delete Relaxation: h™2* and h2dd

Malte Helmert and Gabriele Roger

Universitat Basel



Content of this Course

% Foundations |

~| Logic |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |




Content of this Course: Heuristics

Delete Relaxation }——{ Relaxed Tasks ‘

Relaxed

Abstraction ‘ T Task Craphs

|| Relaxation
P ; Heuristics
. Landmarks
.................. i NetW&k 3
Constraints
“““““““““““““““““““““““““““““““ Flows
' Potential ‘

Heuristics



Introduction




Introduction L acc max 4nd padd
00000

Delete Relaxation Heuristics

m In this chapter, we introduce heuristics
based on delete relaxation.

m Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.
m Unlike the previous chapter, we do not just propagate

information about whether a given node is reachable,
but estimates how expensive it is to reach the node.



Introduction K 2ad °’ro of pMax Summary

[e]e] le]e}

Reminder: Running Example

We will use the same running example as in the previous chapter:
M= (V,l,{o1,02,03,04},7) with

V ={ab,c,d e f, g, h}

I={a—T,b—T,c—F,d—T,
e—F,f—F,g—F h—F}

op=(cV(aAnb),cA((crnd)>e)l)

o2 =(T,f,2)
03 = <faga1>
Oy = <f,h,1>
v=eN(gAh)



max 4nd padd

Introduction

[e]e]e] o} 00«

Algorithm for Reachability Analysis (Reminder)

m reachability analysis in RTGs = computing all forced true
nodes = computing the most conservative assignment

m Here is an algorithm that achieves this:

Reachability Analysis
Associate a reachable attribute with each node.
for all nodes n:
n.reachable := false
while no fixed point is reached:
Choose a node n.
if nis an AND node:
n.reachable := |\, cgcc(n) 1 -reachable
if nis an OR node:
n.reachable := \/n,ESucc(n) n’.reachable




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction f h29d > pme Summar
0000@ [

Reachability Analysis: Example (Reminder)




Introduction F hACC > pma. Summar
0000e

Reachability Analysis: Example (Reminder)




Introduction F hACC > pma. Summar
0000e

Reachability Analysis: Example (Reminder)




Introduction F hACC > pma. Summar
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




Introduction
0000e

Reachability Analysis: Example (Reminder)




AMAX gnd p2dd

®000000

max hadd

and



Introduction h™3* and p294 and h29d Summary

[e] leJe]e]ele)

Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:
m To apply an operator, we must pay its cost.

m To make an OR node true, it is sufficient
to make one of its successors true.

~~ Therefore, we estimate the cost of an OR node
as the minimum of the costs of its successors.

m To make an AND node true, all its successors
must be made true first.

~~ We can be optimistic and estimate the cost
as the maximum of the successor node costs.
~ Or we can be pessimistic and estimate the cost
as the sum of the successor node costs.
~+ We will prove later that this is indeed optimistic/pessimistic.



Introduction h™3* and p294 MaxX and H299
OO 00®0000 5

h™* Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing h™®* Values

Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.COSt := MaXcsyce(n) N -COSE
if n is an effect node for operator o:
n.cost := cost(0) + MaXycsucc(n) - cost
if nis an OR node:
N.COSt := MiN ¢ gycc(n) N -COSE

The overall heuristic value is the cost of the goal node, n,.cost.



AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




pmax hadd

and
0000000

Summary

h™*: Example




pmax hadd

and
0000000

Summar

h™*: Example




pmax hadd

and
0000000

Summar

h™*: Example




pmax hadd

and
0000000

Summar

h™*: Example




pmax p2dd

and
0000000

Summar

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




AMAX gnd p2dd
[e]o]e] le]ele)

h™*: Example




Introduction h™3* and p294 MaxX and H299
OO 0000800 5

h?4d Algorithm

(Differences to h™2* algorithm highlighted.)

Computing h*%9 Values

Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.COSt =3 cqyce(m) M -COSE
if nis an effect node for operator o:
n.cost := cost(0) + >_ e oyce(n) - COS
if nis an OR node:
n.cost 1= MiN y cgycc(n) N -coSt

The overall heuristic value is the cost of the goal node, n,.cost.



AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




pmax hadd

and
000000

Summary

h?dd: Example




pmax hadd

and
000000

Summar

h?dd: Example




pmax hadd

and
000000

Summar

h?dd: Example




pmax hadd

and
000000

Summar

h?dd: Example




pmax p2dd

and
000000

Summar

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd

[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd
[e]o]e]e]e] o)

h?dd: Example




AMAX gnd p2dd f AM3aX gnd p29d

O00000e

h™a* and h24d: Definition

We can now define our first non-trivial heuristics for planning:

h™2 and h29d Heuristics
Let M= (V,I,O,~) be a propositional planning task
in positive normal form.

The h™M@* heuristic value of a state s, written h™®*(s), is obtained
by constructing the RTG for M = (V,s, O",~) and then
computing n,.cost using the h™® value algorithm for RTGs.

The h?99 heuristic value of a state s, written h*44(s), is computed
in the same way using the h?4d value algorithm for RTGs.

Notation: we will use the same notation h™®(n) and h244(n)
for the h™®/h2dd values of RTG nodes



Properties of h™@* and h2dd

900000000

max hadd

Properties of and



Properties of "M3 and h29¢
080000000

Understanding h™® and A4

We want to understand hM2* and h?9d better:
Are they well-defined?

How can they be efficiently computed?
Are they safe?
Are they admissible?

How do they compare to the optimal solution cost
for a delete-relaxed task (h™)?



Properties of "M3 and h29¢
008000000

Well-Definedness of h™* and h?d (1)

Are h™> and h*d9 well-defined?
m The algorithms for computing ™ and h*4¢ values do not
specify in which order the RTG nodes should be selected.

m It turns out that the order does not affect the final result.
~» The h™@* and h?99 values are well-defined.
m To show this, we must show
m that their computation always terminates, and
m that all executions terminate with the same result.

m For time reasons, we only provide a proof sketch.



ma add Properties of "M and p2dd
000e00000

Well-Definedness of h™* and h?dd (2)

The fixed point algorithms for computing h™® and h?9 values
produce a well-defined result.

Proof Sketch.

Let Vg, V4, V5, ... be the vectors of cost values
during a given execution of the algorithm.

Termination: Note that V; > Vi for all J.

It is not hard to prove that each node value can only decrease
a finite number of times: first from oo to some finite value,
and then a finite number of additional times.




Introduction [E] s Properties of h™2* and h29¢
000080000

Well-Definedness of h™® and h*d4 (3)

Proof Sketch (continued).

Uniqueness of result: Let Vg > Vi > Vo > .- >V, be
the finite sequence of cost value vectors until termination
during a given execution of the algorithm.

m View the consistency conditions of all nodes
(e.g., n.cost = minycgycc(n) N'-cost for all OR nodes n)
as a system of equations E.

m V), must be a solution to E (otherwise no fixed point
is reached with V).

m For all i € {0,...,n}, show by induction over i
that V; > S for all solutions S to E.

m It follows that V,, is the unique maximum solution to E
and hence well-defined.




Properties of "M3 and h29¢
000000000

Efficient Computation of h™2* and h2

If nodes are poorly chosen, the h™2*/h2dd algorithm
can update the same node many times
until it reaches its final value.

However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

With this strategy, no node is updated more than once.
(We omit the proof, which is not complicated.)

Using a suitable priority queue data structure,
this allows computing the h™2*/h?4d values of an RTG
with nodes N and arcs A in time O(|N|log |N| + |A]).



Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of "M3 and h29¢
000000800




Properties of "M3 and h29¢
000000800




Properties of "M3 and h29¢
000000800

h™®: Example of Efficient Computation




Properties of "M3 and h29¢
000000800

h™®: Example of Efficient Computation




Properties of "M3 and h29¢
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of h™@* and h2dd
000000800

h™®: Example of Efficient Computation




Properties of "M3 and h29¢
000000000

Efficient Computation of "> and h?4: Remarks

m In the following chapters, we will always assume that we are
using this efficient version of the h™2* and h24d algorithm.

m In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.




Properties of "M3 and h29¢
000000008

Heuristic Quality of "™ and A4

This leaves us with the questions about the heuristic quality
of h™@ and h2dd;

m Are they safe?

m Are they admissible?

m How do they compare to the optimal solution cost
for a delete-relaxed task?

It is easy to see that h™®* and h?%9 are safe:
they assign oo iff a node is unreachable in the delete relaxation.

In our running example, it seems that h™®* is prone to
underestimation and h?%9 is prone to overestimation.

We will study this further in the next chapter.



[ Je]

Summary



max 5.d padd

Summary
oe

Introduction

Summary

m h™2* and h?99 values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).

m They are computed by propagating cost information
in relaxed task graphs:

m At OR nodes, choose the cheapest alternative.
m At AND nodes, maximize or sum the successor costs.
m At effect nodes, also add the operator cost.

m W™ and h?99 values can serve as heuristics.

m They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.



	Introduction
	

	hmax and hadd
	

	Properties of hmax and hadd
	

	Summary
	


