
Planning and Optimization
C5. Delete Relaxation: hmax and hadd

Malte Helmert and Gabriele Röger

Universität Basel

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 1 / 27

Planning and Optimization
— C5. Delete Relaxation: hmax and hadd

C5.1 Introduction

C5.2 hmax and hadd

C5.3 Properties of hmax and hadd

C5.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 2 / 27

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 3 / 27

Content of this Course: Heuristics

Heuristics

Delete Relaxation Relaxed Tasks

Relaxed
Task Graphs

Relaxation
Heuristics

Abstraction

Constraints

Landmarks

Network
Flows

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 4 / 27

C5. Delete Relaxation: hmax and hadd Introduction

C5.1 Introduction

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 5 / 27

C5. Delete Relaxation: hmax and hadd Introduction

Delete Relaxation Heuristics

I In this chapter, we introduce heuristics
based on delete relaxation.

I Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.

I Unlike the previous chapter, we do not just propagate
information about whether a given node is reachable,
but estimates how expensive it is to reach the node.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 6 / 27

C5. Delete Relaxation: hmax and hadd Introduction

Reminder: Running Example

We will use the same running example as in the previous chapter:

Π = 〈V , I , {o1, o2, o3, o4}, γ〉 with

V = {a, b, c , d , e, f , g , h}
I = {a 7→ T, b 7→ T, c 7→ F, d 7→ T,

e 7→ F, f 7→ F, g 7→ F, h 7→ F}
o1 = 〈c ∨ (a ∧ b), c ∧ ((c ∧ d) B e), 1〉
o2 = 〈>, f , 2〉
o3 = 〈f , g , 1〉
o4 = 〈f , h, 1〉
γ = e ∧ (g ∧ h)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 7 / 27

C5. Delete Relaxation: hmax and hadd Introduction

Algorithm for Reachability Analysis (Reminder)

I reachability analysis in RTGs = computing all forced true
nodes = computing the most conservative assignment

I Here is an algorithm that achieves this:

Reachability Analysis

Associate a reachable attribute with each node.
for all nodes n:

n.reachable := false
while no fixed point is reached:

Choose a node n.
if n is an AND node:

n.reachable :=
∧

n′∈succ(n) n
′.reachable

if n is an OR node:
n.reachable :=

∨
n′∈succ(n) n

′.reachable

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 8 / 27

C5. Delete Relaxation: hmax and hadd Introduction

Reachability Analysis: Example (Reminder)

aa

F
a

T
bb

F
b

T
cc

F
c

T
dd

F
d

T
ee

F
e

T
ff

F
f

T
gg

F
g

T
hh

F
h

T

II

F

I

T

FT

FT FT

o1,>o1,>
F

o1,>
T

o1, c ∧ do1, c ∧ d

F

o1, c ∧ d

T

FT

o2,>o2,>
F

o2,>
T

o3,>o3,>
F

o3,>
T

o4,>o4,>
F

o4,>
T

FT

γγ

F

γ

T

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 9 / 27

C5. Delete Relaxation: hmax and hadd hmax and hadd

C5.2 hmax and hadd

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 10 / 27

C5. Delete Relaxation: hmax and hadd hmax and hadd

Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:

I To apply an operator, we must pay its cost.

I To make an OR node true, it is sufficient
to make one of its successors true.

 Therefore, we estimate the cost of an OR node
as the minimum of the costs of its successors.

I To make an AND node true, all its successors
must be made true first.

 We can be optimistic and estimate the cost
as the maximum of the successor node costs.

 Or we can be pessimistic and estimate the cost
as the sum of the successor node costs.

 We will prove later that this is indeed optimistic/pessimistic.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 11 / 27

C5. Delete Relaxation: hmax and hadd hmax and hadd

hmax Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing hmax Values

Associate a cost attribute with each node.
for all nodes n:

n.cost :=∞
while no fixed point is reached:

Choose a node n.
if n is an AND node that is not an effect node:

n.cost := maxn′∈succ(n) n
′.cost

if n is an effect node for operator o:
n.cost := cost(o) + maxn′∈succ(n) n

′.cost
if n is an OR node:

n.cost := minn′∈succ(n) n
′.cost

The overall heuristic value is the cost of the goal node, nγ .cost.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 12 / 27

C5. Delete Relaxation: hmax and hadd hmax and hadd

hmax: Example

aa

∞
a

0

bb

∞
b

0

cc

∞
c

1

dd

∞
d

0

ee

∞
e

2

ff

∞
f

2

gg

∞
g

3

hh

∞
h

3

II

∞
I

0

∞0

∞0 ∞1

o1,>o1,>
∞

o1,>
1

o1, c ∧ do1, c ∧ d

∞
o1, c ∧ d

2

+1 +1

∞0

o2,>o2,>
∞

o2,>
2

+2

o3,>o3,>
∞

o3,>
3

+1

o4,>o4,>
∞

o4,>
3

+1

∞3

γγ

∞
γ

3

 hmax(I) = 3

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 13 / 27

C5. Delete Relaxation: hmax and hadd hmax and hadd

hadd Algorithm

(Differences to hmax algorithm highlighted.)

Computing hadd Values

Associate a cost attribute with each node.
for all nodes n:

n.cost :=∞
while no fixed point is reached:

Choose a node n.
if n is an AND node that is not an effect node:

n.cost :=
∑

n′∈succ(n) n
′.cost

if n is an effect node for operator o:
n.cost := cost(o) +

∑
n′∈succ(n) n

′.cost
if n is an OR node:

n.cost := minn′∈succ(n) n
′.cost

The overall heuristic value is the cost of the goal node, nγ .cost.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 14 / 27

C5. Delete Relaxation: hmax and hadd hmax and hadd

hadd: Example

aa

∞
a

0

bb

∞
b

0

cc

∞
c

1

dd

∞
d

0

ee

∞
e

2

ff

∞
f

2

gg

∞
g

3

hh

∞
h

3

II

∞
I

0

∞0

∞0 ∞1

o1,>o1,>
∞

o1,>
1

o1, c ∧ do1, c ∧ d

∞
o1, c ∧ d

2

+1 +1

∞0

o2,>o2,>
∞

o2,>
2

+2

o3,>o3,>
∞

o3,>
3

+1

o4,>o4,>
∞

o4,>
3

+1

∞6

γγ

∞
γ

8

 hadd(I) = 8

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 15 / 27

C5. Delete Relaxation: hmax and hadd hmax and hadd

hmax and hadd: Definition

We can now define our first non-trivial heuristics for planning:

hmax and hadd Heuristics

Let Π = 〈V , I ,O, γ〉 be a propositional planning task
in positive normal form.

The hmax heuristic value of a state s, written hmax(s), is obtained
by constructing the RTG for Π+

s = 〈V , s,O+, γ〉 and then
computing nγ .cost using the hmax value algorithm for RTGs.

The hadd heuristic value of a state s, written hadd(s), is computed
in the same way using the hadd value algorithm for RTGs.

Notation: we will use the same notation hmax(n) and hadd(n)
for the hmax/hadd values of RTG nodes

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 16 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

C5.3 Properties of hmax and hadd

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 17 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

Understanding hmax and hadd

We want to understand hmax and hadd better:

I Are they well-defined?

I How can they be efficiently computed?

I Are they safe?

I Are they admissible?

I How do they compare to the optimal solution cost
for a delete-relaxed task (h+)?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 18 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

Well-Definedness of hmax and hadd (1)

Are hmax and hadd well-defined?

I The algorithms for computing hmax and hadd values do not
specify in which order the RTG nodes should be selected.

I It turns out that the order does not affect the final result.
 The hmax and hadd values are well-defined.

I To show this, we must show
I that their computation always terminates, and
I that all executions terminate with the same result.

I For time reasons, we only provide a proof sketch.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 19 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

Well-Definedness of hmax and hadd (2)

Theorem

The fixed point algorithms for computing hmax and hadd values
produce a well-defined result.

Proof Sketch.
Let V0,V1,V2, . . . be the vectors of cost values
during a given execution of the algorithm.

Termination: Note that Vi ≥ Vi+1 for all i .
It is not hard to prove that each node value can only decrease
a finite number of times: first from ∞ to some finite value,
and then a finite number of additional times. . . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 20 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

Well-Definedness of hmax and hadd (3)

Proof Sketch (continued).

Uniqueness of result: Let V0 ≥ V1 ≥ V2 ≥ · · · ≥ Vn be
the finite sequence of cost value vectors until termination
during a given execution of the algorithm.

I View the consistency conditions of all nodes
(e.g., n.cost = minn′∈succ(n) n

′.cost for all OR nodes n)
as a system of equations E.

I Vn must be a solution to E (otherwise no fixed point
is reached with Vn).

I For all i ∈ {0, . . . , n}, show by induction over i
that Vi ≥ S for all solutions S to E.

I It follows that Vn is the unique maximum solution to E
and hence well-defined.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 21 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

Efficient Computation of hmax and hadd

I If nodes are poorly chosen, the hmax/hadd algorithm
can update the same node many times
until it reaches its final value.

I However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

I With this strategy, no node is updated more than once.
(We omit the proof, which is not complicated.)

I Using a suitable priority queue data structure,
this allows computing the hmax/hadd values of an RTG
with nodes N and arcs A in time O(|N| log |N|+ |A|).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 22 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

hmax: Example of Efficient Computation

aa

∞
a

0
(2)

bb

∞
b

0
(3)

cc

∞
c

1
(9)

dd

∞
d

0
(4)

ee

∞
e

2
(12)

ff

∞
f

2
(14)

gg

∞
g

3
(16)

hh

∞
h

3
(18)

II

∞
I

0
(1)

∞0
(5)

∞0(6)
∞1

(10)

o1,>o1,>
∞

o1,>
1

(8)
o1, c ∧ do1, c ∧ d

∞
o1, c ∧ d

2
(11)

+1 +1

∞0
(7)

o2,>o2,>
∞

o2,>
2

(13)

+2

o3,>o3,>
∞

o3,>
3

(15)

+1

o4,>o4,>
∞

o4,>
3

(17)

+1

∞3
(19)

γγ

∞
γ

3
(20)

 hmax(I) = 3

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 23 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

Efficient Computation of hmax and hadd: Remarks

I In the following chapters, we will always assume that we are
using this efficient version of the hmax and hadd algorithm.

I In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 24 / 27

C5. Delete Relaxation: hmax and hadd Properties of hmax and hadd

Heuristic Quality of hmax and hadd

This leaves us with the questions about the heuristic quality
of hmax and hadd:

I Are they safe?

I Are they admissible?

I How do they compare to the optimal solution cost
for a delete-relaxed task?

It is easy to see that hmax and hadd are safe:
they assign ∞ iff a node is unreachable in the delete relaxation.

In our running example, it seems that hmax is prone to
underestimation and hadd is prone to overestimation.

We will study this further in the next chapter.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 25 / 27

C5. Delete Relaxation: hmax and hadd Summary

C5.4 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 26 / 27

C5. Delete Relaxation: hmax and hadd Summary

Summary

I hmax and hadd values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).

I They are computed by propagating cost information
in relaxed task graphs:
I At OR nodes, choose the cheapest alternative.
I At AND nodes, maximize or sum the successor costs.
I At effect nodes, also add the operator cost.

I hmax and hadd values can serve as heuristics.

I They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 27 / 27

	Introduction
	

	hmax and hadd
	

	Properties of hmax and hadd
	

	Summary
	

