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C5.1 Introduction

Introduction
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Delete Relaxation Heuristics

» In this chapter, we introduce heuristics
based on delete relaxation.
» Their basic idea is to propagate information
in relaxed task graphs, similar to the previous chapter.

» Unlike the previous chapter, we do not just propagate
information about whether a given node is reachable,
but estimates how expensive it is to reach the node.
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Reminder: Running Example
We will use the same running example as in the previous chapter:
M= (V,I,{o01,02,03,04},7) with
V = {37 b? C7 d7 e7 f7g7 h}
I={a—»T,b—T,c—F,d—T,
e—~F,f—F g—F h—F}
or={(cV(anb),cA((crnd)>e)1)
o =(T,f,2)
o3 =(f,g,1)
O4 = <f, h, 1)
vy=eA(gNh)
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Algorithm for Reachability Analysis (Reminder)

» reachability analysis in RTGs = computing all forced true
nodes = computing the most conservative assignment

» Here is an algorithm that achieves this:

Reachability Analysis
Associate a reachable attribute with each node.
for all nodes n:
n.reachable := false
while no fixed point is reached:
Choose a node n.
if nis an AND node:
n.reachable := )\
if nis an OR node:
n.reachable :=\/

w Esuce(n) n'.reachable

wesucc(n) n’.reachable
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Reachability Analysis: Example (Reminder)
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C5.2 h™® and A%
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Associating Costs with RTG Nodes

Basic intuitions for associating costs with RTG nodes:
» To apply an operator, we must pay its cost.

» To make an OR node true, it is sufficient
to make one of its successors true.
~~ Therefore, we estimate the cost of an OR node
as the minimum of the costs of its successors.

» To make an AND node true, all its successors
must be made true first.
~~ We can be optimistic and estimate the cost
as the maximum of the successor node costs.
~> Or we can be pessimistic and estimate the cost
as the sum of the successor node costs.

~~ We will prove later that this is indeed optimistic/pessimistic.
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h™2* Algorithm

(Differences to reachability analysis algorithm highlighted.)

Computing h™®* Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.COSt := MaXy cycc(n) N -COSE
if n is an effect node for operator o:
n.cost := cost(0) + MaX,csucc(n) - cost
if nis an OR node:

N.Cost := Min ¢ gycc(n) N COSt
The overall heuristic value is the cost of the goal node, n,.cost.
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h™>: Example h?4d Algorithm

and h2dd

(Differences to h™2* algorithm highlighted.)

Computing h?9¢ Values
Associate a cost attribute with each node.
for all nodes n:
n.cost := oo
while no fixed point is reached:
Choose a node n.
if nis an AND node that is not an effect node:
N.cost =} cqycc(m N-COSE
if nis an effect node for operator o:
n.cost := cost(o) + >
if nis an OR node:
n.cost 1= MiN ¢ gyce(n) N -COSE

/
n’ €succ(n) n'.cost

max — .« e .
~ h™(1) =3 The overall heuristic value is the cost of the goal node, n,.cost.
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h?dd: Example h™> and h2%: Definition

We can now define our first non-trivial heuristics for planning:

h™2% and k294 Heuristics
Let M= (V,I,0,) be a propositional planning task
in positive normal form.

The h™®* heuristic value of a state s, written h™®*(s), is obtained
by constructing the RTG for N} = (V,s, O",~) and then
computing ny.cost using the h™** value algorithm for RTGs.

The h?99 heuristic value of a state s, written h2%9(s), is computed
in the same way using the h4 value algorithm for RTGs.

Notation: we will use the same notation h™2*(n) and h23d(n)
for the h™® /h24d values of RTG nodes

— hadd(/) -8
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C5.3 Properties of "M and A4
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Understanding h™® and h2

We want to understand h™®* and h?4d better:
> Are they well-defined?
» How can they be efficiently computed?
> Are they safe?
» Are they admissible?

>

How do they compare to the optimal solution cost
for a delete-relaxed task (h*)?
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Well-Definedness of h™> and h*44 (1)

Properties of h™® and h29d

Are h™® and h?dd well-defined?
» The algorithms for computing hM®* and 44 values do not
specify in which order the RTG nodes should be selected.
> It turns out that the order does not affect the final result.
~» The h™2* and h29d values are well-defined.
» To show this, we must show

> that their computation always terminates, and
» that all executions terminate with the same result.

» For time reasons, we only provide a proof sketch.
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Well-Definedness of h™> and h*44 (2)

Properties of h

Theorem

The fixed point algorithms for computing ™ and h?@ values
produce a well-defined result.

Proof Sketch.
Let Vo, Vi, Vo, ... be the vectors of cost values
during a given execution of the algorithm.

Termination: Note that V; > Vi for all i.

It is not hard to prove that each node value can only decrease
a finite number of times: first from oo to some finite value,
and then a finite number of additional times.
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Well-Definedness of h™® and h*d (3)

Proof Sketch (continued).

Uniqueness of result: Let Vg > Vi > Vo > - >V, be
the finite sequence of cost value vectors until termination
during a given execution of the algorithm.

> View the consistency conditions of all nodes
(e.g., n.cost = minycgce(n) N'-cost for all OR nodes n)
as a system of equations E.

» V,, must be a solution to E (otherwise no fixed point
is reached with V).

» Forall i € {0,...,n}, show by induction over i
that V; > S for all solutions S to E.

> It follows that V/,, is the unique maximum solution to E
and hence well-defined.
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Efficient Computation of "™ and A

> If nodes are poorly chosen, the h™2*/h2dd algorithm
can update the same node many times
until it reaches its final value.

» However, there is a simple strategy that prevents this:
in every iteration, pick a node with minimum new value
among all nodes that can be updated to a new value.

> With this strategy, no node is updated more than once.
(We omit the proof, which is not complicated.)

» Using a suitable priority queue data structure,
this allows computing the h™2*/h2d values of an RTG
with nodes N and arcs A in time O(|N|log|N|+ |A]).
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h™2*: Example of Efficient Computation

s BM(]) =3

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 23 /27

C5. Delete Relaxation: h™2* and h?9d Properties of h

Efficient Computation of ™ and h*¥4: Remarks

» In the following chapters, we will always assume that we are
using this efficient version of the "™ and h?49 algorithm.

» In particular, we will assume that all reachable nodes
of the relaxed task graph are processed exactly once
(and all unreachable nodes not at all), so that it makes sense
to speak of certain nodes being processed after others etc.
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Heuristic Quality of hM®* and f2dd

This leaves us with the questions about the heuristic quality
of h™2* and hdd:

> Are they safe?

> Are they admissible?

» How do they compare to the optimal solution cost
for a delete-relaxed task?

It is easy to see that h™®* and h?dd are safe:
they assign oo iff a node is unreachable in the delete relaxation.

In our running example, it seems that h™®* is prone to
underestimation and 299 is prone to overestimation.

We will study this further in the next chapter.

max add
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C5.4 Summary
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Summary

> A% and h?9d values estimate how expensive it is to reach
a state variable, operator effect or formula (e.g., the goal).
» They are computed by propagating cost information
in relaxed task graphs:

» At OR nodes, choose the cheapest alternative.
» At AND nodes, maximize or sum the successor costs.
> At effect nodes, also add the operator cost.

» h™M2% and h?94 values can serve as heuristics.

» They are well-defined and can be computed efficiently
by computing them in order of increasing cost along the RTG.
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