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The Story So Far

I A general way to come up with heuristics is to solve
a simplified version of the real problem.

I delete relaxation: given a task in positive normal form,
discard all delete effects

I A simple greedy algorithm solves relaxed tasks efficiently
but usually generates plans of poor quality.

How hard is it to find optimal plans?
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The Set Cover Problem

To obtain an admissible heuristic, we must compute
optimal relaxed plans. Can we do this efficiently?

This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn}
with Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K.
Question: Is there a set cover of size at most K, i.e.,
a subcollection S = {S1, . . . ,Sm} ⊆ C
with S1 ∪ · · · ∪ Sm = U and m ≤ K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.
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Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPlanEx problem restricted to delete-relaxed
planning tasks is NP-complete.

Proof.
For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V |
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem. . . .
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Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance 〈U,C ,K 〉, we generate the following
relaxed planning task Π+ = 〈V , I ,O+, γ〉:
I V = U

I I = {v 7→ F | v ∈ V }
I O+ = {〈>,

∧
v∈Ci

v , 1〉 | Ci ∈ C}
I γ =

∧
v∈U v

If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets
corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K .

Moreover, Π+ can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction.
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Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

I Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
 h+ heuristic

I Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
 hmax heuristic, hadd heuristic, hLM-cut heuristic

I Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
 hFF heuristic
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AND/OR Graphs: Motivation

I Most relaxation heuristics we will consider can be understood
in terms of computations on graphical structures called
AND/OR graphs.

I We now introduce AND/OR graphs and study
some of their major properties.

I In the next chapter, we will relate AND/OR graphs
to relaxed planning tasks.
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AND/OR Graphs

Definition (AND/OR Graph)

An AND/OR graph 〈N,A, type〉 is a directed graph 〈N,A〉 with
a node label function type : N → {∧,∨} partitioning nodes into

I AND nodes (type(v) = ∧) and

I OR nodes (type(v) = ∨).

We write succ(n) for the successors of node n ∈ N, i.e.,
succ(n) = {n′ ∈ N | 〈n, n′〉 ∈ A}.

Note: We draw AND nodes as squares and OR nodes as circles.
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AND/OR Graph Valuations

Definition (Consistent Valuations of AND/OR Graphs)

Let G be an AND/OR graph with nodes N.

A valuation or truth assignment of G is a valuation
α : N → {T,F}, treating the nodes as propositional variables.

We say that α is consistent if

I for all AND nodes n ∈ N: α |= n iff α |=
∧

n′∈succ(n) n
′.

I for all OR nodes n ∈ N: α |= n iff α |=
∨

n′∈succ(n) n
′.

Note that
∧

n′∈∅ n
′ = > and

∨
n′∈∅ n

′ = ⊥.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 16 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

Example: A Consistent Valuation

F F F

FT T F

T F
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Example: Another Consistent Valuation

T T F

FT T F

T F
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Example: An Inconsistent Valuation

F F T

TT F E T

T T E
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How Do We Find Consistent Valuations?

If we want to use valuations of AND/OR graphs algorithmically,
a number of questions arise:

I Do consistent valuations exist for every AND/OR graph?

I Are they unique?

I If not, how are different consistent valuations related?

I Can consistent valuations be computed efficiently?

Our example shows that the answer to the second question is “no”.
In the rest of this chapter, we address the remaining questions.
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C3.3 Forced Nodes
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Forced Nodes

Definition (Forced True/False Nodes)

Let G be an AND/OR graph.

A node n of G is called forced true
if α(n) = T for all consistent valuations α of G .

A node n of G is called forced false
if α(n) = F for all consistent valuations α of G .

How can we efficiently determine that nodes are forced true/false?

 We begin by looking at some simple rules.
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Rules for Forced True Nodes

Proposition (Rules for Forced True Nodes)

Let n be a node in an AND/OR graph.

Rule T-(∧): If n is an AND node and all
of its successors are forced true, then n is forced true.

Rule T-(∨): If n is an OR node and at least one
of its successors is forced true, then n is forced true.

Remarks:

I These are “if, then” rules.
Would they also be correct as “if and only if” rules?

I For the first rule, it is easy to see that the answer is “yes”.

I For the second rule, this is not so easy. (Why not?)
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Rules for Forced False Nodes

Proposition (Rules for Forced False Nodes)

Let n be a node in an AND/OR graph.

Rule F-(∧): If n is an AND node and at least one
of its successors is forced false, then n is forced false.

Rule F-(∨): If n is an OR node and all
of its successors are forced false, then n is forced false.

Remarks:

I Analogous comments as in the case of forced true nodes apply.

I This time, it is the first rule for which it is not obvious
if a corresponding “if and only if” rule would be correct.
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Example: Applying the Rules for Forced Nodes

T(2) T (3) F (2)

T (1) F (1)
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Completeness of Rules for Forced Nodes

Theorem

If n is a node in an AND/OR graph that is forced true,
then this can be derived by a sequence of applications
of Rule T-(∧) and Rule T-(∨).

Theorem

If n is a node in an AND/OR graph that is forced false,
then this can be derived by a sequence of applications
of Rule F-(∧) and Rule F-(∨).

We prove the result for forced true nodes.
The result for forced false nodes can be proved analogously.
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Completeness of Rules for Forced Nodes: Proof (1)

Proof.
I Let α be a valuation where α(n) = T iff there exists

a sequence ρn of applications of Rules T-(∧)
and Rule T-(∨) that derives that n is forced true.

I Because the rules are monotonic, there exists a sequence ρ
of rule applications that derives that n is forced true
for all n ∈ on(α). (Just concatenate all ρn to form ρ.)

I By the correctness of the rules, we know that all nodes
reached by ρ are forced true. It remains to show
that none of the nodes not reached by ρ is forced true.

I We prove this by showing that α is consistent,
and hence no nodes with α(n) = F can be forced true.

. . .
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Completeness of Rules for Forced Nodes: Proof (2)

Proof (continued).

Case 1: nodes n with α(n) = T

I In this case, ρ must have reached n in one of
the derivation steps. Consider this derivation step.

I If n is an AND node, ρ must have reached
all successors of n in previous steps,
and hence α(n′) = T for all successors n′.

I If n is an OR node, ρ must have reached
at least one successor of n in a previous step,
and hence α(n′) = T for at least one successor n′.

I In both cases, α is consistent for node n.

. . .
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Completeness of Rules for Forced Nodes: Proof (3)

Proof (continued).

Case 2: nodes n with α(n) = F

I In this case, by definition of α no sequence of derivation steps
reaches n. In particular, ρ does not reach n.

I If n is an AND node, there must exist
some n′ ∈ succ(n) which ρ does not reach.
Otherwise, ρ could be extended using Rule T-(∧) to reach n.
Hence, α(n′) = F for some n′ ∈ succ(n).

I If n is an OR node, there cannot exist
any n′ ∈ succ(n) which ρ reaches.
Otherwise, ρ could be extended using Rule T-(∨) to reach n.
Hence, α(n′) = F for all n′ ∈ succ(n).

I In both cases, α is consistent for node n.
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Remarks on Forced Nodes

Notes:

I The theorem shows that we can compute all forced nodes
by applying the rules repeatedly until a fixed point is reached.

I In particular, this also shows that the order of rule application
does not matter: we always end up with the same result.

I In an efficient implementation, the sets of forced nodes can be
computed in linear time in the size of the AND/OR graph.

I The proof of the theorem also shows that every
AND/OR graph has a consistent valuation,
as we explicitly construct one in the proof.
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C3.4 Most/Least Conservative
Valuations
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Most and Least Conservative Valuation

Definition (Most and Least Conservative Valuation)

Let G be an AND/OR graph with nodes N.

The most conservative valuation αG
mcv : N → {T,F} and

the least conservative valuation αG
lcv : N → {T,F}

of G are defined as:

αG
mcv(n) =

{
T if n is forced true

F otherwise

αG
lcv(n) =

{
F if n is forced false

T otherwise

Note: αG
mcv is the valuation constructed in the previous proof.
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Properties of Most/Least Conservative Valuations

Theorem (Properties of Most/Least Conservative Valuations)

Let G be an AND/OR graph. Then:

1 αG
mcv is consistent.

2 αG
lcv is consistent.

3 For all consistent valuations α of G,
on(αG

mcv) ⊆ on(α) ⊆ on(αG
lcv).
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Properties of MCV/LCV: Proof

Proof.
Part 1. was shown in the preceding proof. We showed that
the valuation α considered in this proof is consistent
and satisfies α(n) = T iff n is forced true, which implies α = αG

mcv.

The proof of Part 2. is analogous, using the rules
for forced false nodes instead of forced true nodes.

Part 3 follows directly from the definitions
of forced nodes, αG

mcv and αG
lcv.
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Properties of MCV/LCV: Consequences

This theorem answers our remaining questions about the existence,
uniqueness, structure and computation of consistent valuations:

I Consistent valuations always exist
and can be efficiently computed.

I All consistent valuations lie between
the most and least conservative one.

I There is a unique consistent valuation iff αG
mcv = αG

lcv,
or equivalently iff each node is forced true or forced false.
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C3.5 Summary
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Summary (1)

I For an informative heuristic, we would ideally want to find
optimal relaxed plans.

I The solution cost of an optimal relaxed plan
is the estimate of the h+ heuristic.

I However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

I Other relaxation heuristics can be understood
in terms of computations on AND/OR graphs.
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Summary (2)

I AND/OR graphs are directed graphs
with AND nodes and OR nodes.

I We can assign truth values to AND/OR graph nodes.

I Such valuations are called consistent if they match
the intuitive meaning of “AND” and “OR”.

I Consistent valuations always exist.

I Consistent valuations can be computed efficiently.
I All consistent valuations fall between two extremes:

I the most conservative valuation, where only nodes
that are forced to be true are true

I the least conservative valuation, where all nodes
that are not forced to be false are true
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