
Planning and Optimization
C3. Delete Relaxation: Hardness of Optimal Planning &

AND/OR Graphs

Malte Helmert and Gabriele Röger

Universität Basel

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 1 / 38

Planning and Optimization
— C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR Graphs

C3.1 Optimal Relaxed Plans

C3.2 AND/OR Graphs

C3.3 Forced Nodes

C3.4 Most/Least Conservative Valuations

C3.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 2 / 38

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 3 / 38

Content of this Course: Heuristics

Heuristics

Delete Relaxation Relaxed Tasks

Relaxed
Task Graphs

Relaxation
Heuristics

Abstraction

Constraints

Landmarks

Network
Flows

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 4 / 38



The Story So Far

I A general way to come up with heuristics is to solve
a simplified version of the real problem.

I delete relaxation: given a task in positive normal form,
discard all delete effects

I A simple greedy algorithm solves relaxed tasks efficiently
but usually generates plans of poor quality.

How hard is it to find optimal plans?

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 5 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Optimal Relaxed Plans

C3.1 Optimal Relaxed Plans

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 6 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Optimal Relaxed Plans

The Set Cover Problem

To obtain an admissible heuristic, we must compute
optimal relaxed plans. Can we do this efficiently?

This question is related to the following problem:

Problem (Set Cover)

Given: a finite set U, a collection of subsets C = {C1, . . . ,Cn}
with Ci ⊆ U for all i ∈ {1, . . . , n}, and a natural number K.
Question: Is there a set cover of size at most K, i.e.,
a subcollection S = {S1, . . . ,Sm} ⊆ C
with S1 ∪ · · · ∪ Sm = U and m ≤ K?

The following is a classical result from complexity theory:

Theorem (Karp 1972)

The set cover problem is NP-complete.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 7 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Optimal Relaxed Plans

Complexity of Optimal Relaxed Planning (1)

Theorem (Complexity of Optimal Relaxed Planning)

The BCPlanEx problem restricted to delete-relaxed
planning tasks is NP-complete.

Proof.
For membership in NP, guess a plan and verify.

It is sufficient to check plans of length at most |V |
where V is the set of state variables, so this can be done
in nondeterministic polynomial time.

For hardness, we reduce from the set cover problem. . . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 8 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Optimal Relaxed Plans

Complexity of Optimal Relaxed Planning (2)

Proof (continued).

Given a set cover instance 〈U,C ,K 〉, we generate the following
relaxed planning task Π+ = 〈V , I ,O+, γ〉:
I V = U

I I = {v 7→ F | v ∈ V }
I O+ = {〈>,

∧
v∈Ci

v , 1〉 | Ci ∈ C}
I γ =

∧
v∈U v

If S is a set cover, the corresponding operators form a plan.
Conversely, each plan induces a set cover by taking the subsets
corresponding to the operators. There exists a plan of cost
at most K iff there exists a set cover of size K .

Moreover, Π+ can be generated from the set cover instance
in polynomial time, so this is a polynomial reduction.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 9 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

C3.2 AND/OR Graphs

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 10 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

Using Relaxations in Practice

How can we use relaxations for heuristic planning in practice?

Different possibilities:

I Implement an optimal planner for relaxed planning tasks
and use its solution costs as estimates, even though
optimal relaxed planning is NP-hard.
 h+ heuristic

I Do not actually solve the relaxed planning task,
but compute an approximation of its solution cost.
 hmax heuristic, hadd heuristic, hLM-cut heuristic

I Compute a solution for relaxed planning tasks
which is not necessarily optimal, but “reasonable”.
 hFF heuristic

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 11 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

AND/OR Graphs: Motivation

I Most relaxation heuristics we will consider can be understood
in terms of computations on graphical structures called
AND/OR graphs.

I We now introduce AND/OR graphs and study
some of their major properties.

I In the next chapter, we will relate AND/OR graphs
to relaxed planning tasks.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 12 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

Content of this Course: Heuristics

Heuristics

Delete Relaxation Relaxed Tasks

Relaxed
Task Graphs

Relaxation
Heuristics

Abstraction

Constraints

Landmarks

Network
Flows

Potential
Heuristics

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 13 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

AND/OR Graph Example

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 14 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

AND/OR Graphs

Definition (AND/OR Graph)

An AND/OR graph 〈N,A, type〉 is a directed graph 〈N,A〉 with
a node label function type : N → {∧,∨} partitioning nodes into

I AND nodes (type(v) = ∧) and

I OR nodes (type(v) = ∨).

We write succ(n) for the successors of node n ∈ N, i.e.,
succ(n) = {n′ ∈ N | 〈n, n′〉 ∈ A}.

Note: We draw AND nodes as squares and OR nodes as circles.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 15 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

AND/OR Graph Valuations

Definition (Consistent Valuations of AND/OR Graphs)

Let G be an AND/OR graph with nodes N.

A valuation or truth assignment of G is a valuation
α : N → {T,F}, treating the nodes as propositional variables.

We say that α is consistent if

I for all AND nodes n ∈ N: α |= n iff α |=
∧

n′∈succ(n) n
′.

I for all OR nodes n ∈ N: α |= n iff α |=
∨

n′∈succ(n) n
′.

Note that
∧

n′∈∅ n
′ = > and

∨
n′∈∅ n

′ = ⊥.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 16 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

Example: A Consistent Valuation

F F F

FT T F

T F

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 17 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

Example: Another Consistent Valuation

T T F

FT T F

T F

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 18 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

Example: An Inconsistent Valuation

F F T

TT F E T

T T E

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 19 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs AND/OR Graphs

How Do We Find Consistent Valuations?

If we want to use valuations of AND/OR graphs algorithmically,
a number of questions arise:

I Do consistent valuations exist for every AND/OR graph?

I Are they unique?

I If not, how are different consistent valuations related?

I Can consistent valuations be computed efficiently?

Our example shows that the answer to the second question is “no”.
In the rest of this chapter, we address the remaining questions.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 20 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

C3.3 Forced Nodes

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 21 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Forced Nodes

Definition (Forced True/False Nodes)

Let G be an AND/OR graph.

A node n of G is called forced true
if α(n) = T for all consistent valuations α of G .

A node n of G is called forced false
if α(n) = F for all consistent valuations α of G .

How can we efficiently determine that nodes are forced true/false?

 We begin by looking at some simple rules.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 22 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Rules for Forced True Nodes

Proposition (Rules for Forced True Nodes)

Let n be a node in an AND/OR graph.

Rule T-(∧): If n is an AND node and all
of its successors are forced true, then n is forced true.

Rule T-(∨): If n is an OR node and at least one
of its successors is forced true, then n is forced true.

Remarks:

I These are “if, then” rules.
Would they also be correct as “if and only if” rules?

I For the first rule, it is easy to see that the answer is “yes”.

I For the second rule, this is not so easy. (Why not?)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 23 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Rules for Forced False Nodes

Proposition (Rules for Forced False Nodes)

Let n be a node in an AND/OR graph.

Rule F-(∧): If n is an AND node and at least one
of its successors is forced false, then n is forced false.

Rule F-(∨): If n is an OR node and all
of its successors are forced false, then n is forced false.

Remarks:

I Analogous comments as in the case of forced true nodes apply.

I This time, it is the first rule for which it is not obvious
if a corresponding “if and only if” rule would be correct.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 24 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Example: Applying the Rules for Forced Nodes

T(2) T (3) F (2)

T (1) F (1)

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 25 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Completeness of Rules for Forced Nodes

Theorem

If n is a node in an AND/OR graph that is forced true,
then this can be derived by a sequence of applications
of Rule T-(∧) and Rule T-(∨).

Theorem

If n is a node in an AND/OR graph that is forced false,
then this can be derived by a sequence of applications
of Rule F-(∧) and Rule F-(∨).

We prove the result for forced true nodes.
The result for forced false nodes can be proved analogously.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 26 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Completeness of Rules for Forced Nodes: Proof (1)

Proof.
I Let α be a valuation where α(n) = T iff there exists

a sequence ρn of applications of Rules T-(∧)
and Rule T-(∨) that derives that n is forced true.

I Because the rules are monotonic, there exists a sequence ρ
of rule applications that derives that n is forced true
for all n ∈ on(α). (Just concatenate all ρn to form ρ.)

I By the correctness of the rules, we know that all nodes
reached by ρ are forced true. It remains to show
that none of the nodes not reached by ρ is forced true.

I We prove this by showing that α is consistent,
and hence no nodes with α(n) = F can be forced true.

. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 27 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Completeness of Rules for Forced Nodes: Proof (2)

Proof (continued).

Case 1: nodes n with α(n) = T

I In this case, ρ must have reached n in one of
the derivation steps. Consider this derivation step.

I If n is an AND node, ρ must have reached
all successors of n in previous steps,
and hence α(n′) = T for all successors n′.

I If n is an OR node, ρ must have reached
at least one successor of n in a previous step,
and hence α(n′) = T for at least one successor n′.

I In both cases, α is consistent for node n.

. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 28 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Completeness of Rules for Forced Nodes: Proof (3)

Proof (continued).

Case 2: nodes n with α(n) = F

I In this case, by definition of α no sequence of derivation steps
reaches n. In particular, ρ does not reach n.

I If n is an AND node, there must exist
some n′ ∈ succ(n) which ρ does not reach.
Otherwise, ρ could be extended using Rule T-(∧) to reach n.
Hence, α(n′) = F for some n′ ∈ succ(n).

I If n is an OR node, there cannot exist
any n′ ∈ succ(n) which ρ reaches.
Otherwise, ρ could be extended using Rule T-(∨) to reach n.
Hence, α(n′) = F for all n′ ∈ succ(n).

I In both cases, α is consistent for node n.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 29 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Forced Nodes

Remarks on Forced Nodes

Notes:

I The theorem shows that we can compute all forced nodes
by applying the rules repeatedly until a fixed point is reached.

I In particular, this also shows that the order of rule application
does not matter: we always end up with the same result.

I In an efficient implementation, the sets of forced nodes can be
computed in linear time in the size of the AND/OR graph.

I The proof of the theorem also shows that every
AND/OR graph has a consistent valuation,
as we explicitly construct one in the proof.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 30 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Most/Least Conservative Valuations

C3.4 Most/Least Conservative
Valuations

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 31 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Most/Least Conservative Valuations

Most and Least Conservative Valuation

Definition (Most and Least Conservative Valuation)

Let G be an AND/OR graph with nodes N.

The most conservative valuation αG
mcv : N → {T,F} and

the least conservative valuation αG
lcv : N → {T,F}

of G are defined as:

αG
mcv(n) =

{
T if n is forced true

F otherwise

αG
lcv(n) =

{
F if n is forced false

T otherwise

Note: αG
mcv is the valuation constructed in the previous proof.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 32 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Most/Least Conservative Valuations

Properties of Most/Least Conservative Valuations

Theorem (Properties of Most/Least Conservative Valuations)

Let G be an AND/OR graph. Then:

1 αG
mcv is consistent.

2 αG
lcv is consistent.

3 For all consistent valuations α of G,
on(αG

mcv) ⊆ on(α) ⊆ on(αG
lcv).

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 33 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Most/Least Conservative Valuations

Properties of MCV/LCV: Proof

Proof.
Part 1. was shown in the preceding proof. We showed that
the valuation α considered in this proof is consistent
and satisfies α(n) = T iff n is forced true, which implies α = αG

mcv.

The proof of Part 2. is analogous, using the rules
for forced false nodes instead of forced true nodes.

Part 3 follows directly from the definitions
of forced nodes, αG

mcv and αG
lcv.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 34 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Most/Least Conservative Valuations

Properties of MCV/LCV: Consequences

This theorem answers our remaining questions about the existence,
uniqueness, structure and computation of consistent valuations:

I Consistent valuations always exist
and can be efficiently computed.

I All consistent valuations lie between
the most and least conservative one.

I There is a unique consistent valuation iff αG
mcv = αG

lcv,
or equivalently iff each node is forced true or forced false.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 35 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Summary

C3.5 Summary

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 36 / 38



C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Summary

Summary (1)

I For an informative heuristic, we would ideally want to find
optimal relaxed plans.

I The solution cost of an optimal relaxed plan
is the estimate of the h+ heuristic.

I However, the bounded-cost plan existence problem
for relaxed planning tasks is NP-complete.

I Other relaxation heuristics can be understood
in terms of computations on AND/OR graphs.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 37 / 38

C3. Delete Relaxation: Hardness of Optimal Planning & AND/OR
Graphs Summary

Summary (2)

I AND/OR graphs are directed graphs
with AND nodes and OR nodes.

I We can assign truth values to AND/OR graph nodes.

I Such valuations are called consistent if they match
the intuitive meaning of “AND” and “OR”.

I Consistent valuations always exist.

I Consistent valuations can be computed efficiently.
I All consistent valuations fall between two extremes:

I the most conservative valuation, where only nodes
that are forced to be true are true

I the least conservative valuation, where all nodes
that are not forced to be false are true

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 38 / 38


	Optimal Relaxed Plans
	

	AND/OR Graphs
	

	Forced Nodes
	

	Most/Least Conservative Valuations
	

	Summary
	


