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On-Set and Dominating States

Definition (On-Set)

The on-set of a valuation s is the set of propositional variables
that are true in s, i.e., on(s) = s71({T}).

~ for states of propositional planning tasks:
states can be viewed as sets of (true) state variables

Definition (Dominate)

A valuation s’ dominates a valuation s if on(s) C on(s’).

~ all state variables true in s are also true in s’
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Domination Lemma (1)

Lemma (Domination)

Let s and s’ be valuations of a set of propositional variables V,
and let x be a propositional formula over V
which does not contain negation symbols.

If s E x and s’ dominates s, then s’ |= x.

Proof.

Proof by induction over the structure of .
m Base case Y = T: then s’ ET.
m Base case x = L: then s [£ L.

| A
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Domination Lemma (2)

Proof (continued).

m Base case x = v € V: if s = v, then v € on(s).
With on(s) C on(s’), we get v € on(s’) and hence s’ |= v.

m Inductive case y = x1 A x2: by induction hypothesis, our
claim holds for the proper subformulas x; and x> of x.

s Ex = s ExiAxe
= s Exiand s E x2
LH. (twi
A=) ssExiands’ Exo
= s xi A xe
== s'Ex.

m Inductive case Y = x1 V x2: analogous
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Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V.
Let e be an effect over V, and let s be a state over V.

The add set of e in s, written addset(e, s),

and the delete set of e in s, written delset(e, s),

are defined as the following sets of state variables:

addset(e,s) = {v € V| s |= effcond(v, e)}
delset(e,s) = {v € V | s = effcond(—v, e)}

Note: For all states s and operators o applicable in s, we have
on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff(0), s).
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Relaxation Lemma

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s' be a state that dominates s.
@ If o is an operator applicable in s,
then o™ is applicable in s' and s'[o"] dominates s[o].

@ If m is an operator sequence applicable in s,
then m" is applicable in s and s'[x "] dominates s[r].

© If additionally 7 leads to a goal state from state s,
then T leads to a goal state from state s'.




Domination Lemma The Relaxation Lemma operties e Algorithm
000@0000 ©

Proof of Relaxation Lemma (1)

Proof.
Let V be the set of state variables.

Part 1: Because o is applicable in s, we have s = pre(o).

Because pre(o) is negation-free and s’ dominates s,
we get s’ = pre(o) from the domination lemma.

Because pre(o™) = pre(o), this shows that o is applicable in s'.
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Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s’[o™] dominates s[o],
we first compare the relevant add sets:

addset(eff{0),s) = {v € V| s |= effcond(v, eff(0))}
={v €V |s [ effcond(v,effo™))} (1)
C{ve V|s | effcond(v,effo™))} (2)
= addset(effo™),s),

where (1) uses effcond(v, eff(0)) = effcond(v, effo™))
and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form).
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Proof of Relaxation Lemma (3)

Proof (continued).

We then get:

on(s[o]) = (on(s) \ delset(eff(0),s)) U addset(eff(0), s)
on(s) U addset(eff{0), s)

on(s') U addset(efo™), s')

= on(s'[o™]),

-
-

and thus s'[o"] dominates s[o].

This concludes the proof of Part 1.

Summary
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Proof of Relaxation Lemma (4)

Proof (continued).

Part 2: by induction over n = |7|

Base case: m = ()

The empty plan is trivially applicable in s’, and

s'[()*] = s’ dominates s[()] = s by prerequisite.

Inductive case: m = (o1,...,0nt1)

By the induction hypothesis, (o;“, ...,05) is applicable in s/,
and t' = s'[{of,...,0;)] dominates t = s[{o1,...,0n)].
Also, on+1 is applicable in t.

Using Part 1, o, is applicable in t' and s'[7 "] = [0}, ;]
dominates s[7]] = t[on+1]-

This concludes the proof of Part 2.
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Proof of Relaxation Lemma (5)

Proof (continued).

Part 3: Let v be the goal formula.

From Part 2, we obtain that t' = s'[7"] dominates t = s[n].
By prerequisite, t is a goal state and hence t |= 7.

Because the task is in positive normal form, - is negation-free,
and hence t' = v because of the domination lemma.

Therefore, t’ is a goal state.
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Further Properties of Delete Relaxation

m The relaxation lemma is the main technical result
that we will use to study delete relaxation.

m Next, we derive some further properties of delete relaxation
that will be useful for us.

m Two of these are direct consequences of the relaxation lemma.
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Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let m be an operator sequence that is applicable in state s.
Then w is applicable in s and s[7 "] dominates s[r].
If w is a plan for 1, then ©+ is a plan for M+.

Apply relaxation lemma with s’ = s.

~ Relaxations of plans are relaxed plans.
~+ Delete relaxation is no harder to solve than original task.

~ Optimal relaxed plans are never more expensive
than optimal plans for original tasks.
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Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s,
and let T be a relaxed operator sequence applicable in s.

Then 7t is applicable in s’ and s'[nt] dominates s[x].

| \

Proof.
Apply relaxation lemma with 7+ for 7,
noting that (7 7)" =7+, O

~ If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s’.

~» Dominating states are always “better” in relaxed tasks.
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Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)
Let s be a state in which relaxed operator o™ is applicable.
Then s[o™] dominates s.

Proof.
Since relaxed operators only have positive effects,
we have on(s) C on(s) U addset(effo™), s) = on(s[o™]).

| A\

Ol

~ Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.
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Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.
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Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for (V, I, O, ~)

s:=1

=)

loop forever:
if s =~

return 7
else if there is an operator o™ € O™ applicable in s
with s[o™] # s:
Append such an operator ot to 7.
s:=s[o"]
else:
return unsolvable
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Correctness of the Greedy Algorithm

The algorithm is sound:

m If it returns a plan, this is indeed a correct solution.
m If it returns “unsolvable”, the task is indeed unsolvable

m Upon termination, there clearly is no relaxed plan from s.
m By iterated application of the monotonicity lemma,
s dominates /.

m By the relaxation lemma, there is no solution from /.

What about completeness (termination) and runtime?
m Each iteration of the loop adds at least one atom to on(s).
m This guarantees termination after at most |V/| iterations.

m Thus, the algorithm can clearly be implemented
to run in polynomial time.

m A good implementation runs in O(]|M]]).
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Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search:

m When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

m When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal ¢.

m Set h(s) to the cost of the generated relaxed plan.

Is this an admissible heuristic?

m Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

m However, usually they are not, because our greedy
relaxed planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)
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Summary

m Delete relaxation is a simplification in the sense that it is
never harder to solve a relaxed task than the original one.

m Delete-relaxed tasks have a domination property:
it is always beneficial to make more state variables true.

m Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

m However, the solution quality of this algorithm is poor.
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