Planning and Optimization
C2. Delete Relaxation: Properties of Relaxed Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

% Foundations |

~| Logic |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

Content of this Course: Heuristics

Delete Relaxation }——{ Relaxed Tasks ‘

Abstracti ‘ L Relaxed
e Task Graphs
L Relaxation
U andmarke r Heuristics
““““““““““ Landmarks
.................. Network
Constraints i
“““““““““““““““““““““““““““““““ Flows
 Potential

Heuristics

The Domination Lemma

The Domination Lemma ion Lemma B
000 5

On-Set and Dominating States

Definition (On-Set)

The on-set of a valuation s is the set of propositional variables
that are true in s, i.e., on(s) = s71({T}).

~ for states of propositional planning tasks:
states can be viewed as sets of (true) state variables

Definition (Dominate)

A valuation s’ dominates a valuation s if on(s) C on(s’).

~ all state variables true in s are also true in s’

The Domination Lemma on Lemma operties e Algorithm

[e]e] o]

Domination Lemma (1)

Lemma (Domination)

Let s and s’ be valuations of a set of propositional variables V,
and let x be a propositional formula over V
which does not contain negation symbols.

If s E x and s’ dominates s, then s’ |= x.

Proof.

Proof by induction over the structure of .
m Base case Y = T: then s’ ET.
m Base case x = L: then s [£ L.

| A

The Domination Lemma on Lemma operties e Algorithm

[eJe]e]]

Domination Lemma (2)

Proof (continued).

m Base case x = v € V: if s = v, then v € on(s).
With on(s) C on(s’), we get v € on(s’) and hence s’ |= v.

m Inductive case y = x1 A x2: by induction hypothesis, our
claim holds for the proper subformulas x; and x> of x.

s Ex = s ExiAxe
= s Exiand s E x2
LH. (twi
A=) ssExiands’ Exo
= s xi A xe
== s'Ex.

m Inductive case Y = x1 V x2: analogous

The Relaxation Lemma

00000000

The Relaxation Lemma

The Domination Lemma The Relaxation Lemma erties Greedy Algorithm Summary
0000 00000000 0000 00

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V.
Let e be an effect over V, and let s be a state over V.

The add set of e in s, written addset(e, s),

and the delete set of e in s, written delset(e, s),

are defined as the following sets of state variables:

addset(e,s) = {v € V| s |= effcond(v, e)}
delset(e,s) = {v € V | s = effcond(—v, e)}

Note: For all states s and operators o applicable in s, we have
on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff(0), s).

Domination Lemma The Relaxation Lemma operties e Algorithm
00®00000 o

Relaxation Lemma

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s' be a state that dominates s.
@ If o is an operator applicable in s,
then o™ is applicable in s' and s'[o"] dominates s[o].

@ If m is an operator sequence applicable in s,
then m" is applicable in s and s'[x "] dominates s[r].

© If additionally 7 leads to a goal state from state s,
then T leads to a goal state from state s'.

Domination Lemma The Relaxation Lemma operties e Algorithm
000@0000 ©

Proof of Relaxation Lemma (1)

Proof.
Let V be the set of state variables.

Part 1: Because o is applicable in s, we have s = pre(o).

Because pre(o) is negation-free and s’ dominates s,
we get s’ = pre(o) from the domination lemma.

Because pre(o™) = pre(o), this shows that o is applicable in s'.

The Domination Lemma The Relaxation Lemma Greedy Algorithm Summary
00008000 000000 00

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s’[o™] dominates s[o],
we first compare the relevant add sets:

addset(eff{0),s) = {v € V| s |= effcond(v, eff(0))}
={v €V |s [effcond(v,effo™))} (1)
C{ve V|s | effcond(v,effo™))} (2)
= addset(effo™),s),

where (1) uses effcond(v, eff(0)) = effcond(v, effo™))
and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form).

The Domination Lemma The Relaxation Lemma Further Properties Greedy Algorithm
00000800 000000)

Proof of Relaxation Lemma (3)

Proof (continued).

We then get:

on(s[o]) = (on(s) \ delset(eff(0),s)) U addset(eff(0), s)
on(s) U addset(eff{0), s)

on(s') U addset(efo™), s')

= on(s'[o™]),

-
-

and thus s'[o"] dominates s[o].

This concludes the proof of Part 1.

Summary

The Domination Lemma The Relaxation Lemma roperties Algorithm

[e]e]e]e]e]e] Jo)

Proof of Relaxation Lemma (4)

Proof (continued).

Part 2: by induction over n = |7|

Base case: m = ()

The empty plan is trivially applicable in s’, and

s'[()*] = s’ dominates s[()] = s by prerequisite.

Inductive case: m = (o1,...,0nt1)

By the induction hypothesis, (o;“, ...,05) is applicable in s/,
and t' = s'[{of,...,0;)] dominates t = s[{o1,...,0n)].
Also, on+1 is applicable in t.

Using Part 1, o, is applicable in t' and s'[7 "] = [0}, ;]
dominates s[7]] = t[on+1]-

This concludes the proof of Part 2.

Domination Lemma The Relaxation Lemma operties e Algorithm
0000000@ © [

Proof of Relaxation Lemma (5)

Proof (continued).

Part 3: Let v be the goal formula.

From Part 2, we obtain that t' = s'[7"] dominates t = s[n].
By prerequisite, t is a goal state and hence t |= 7.

Because the task is in positive normal form, - is negation-free,
and hence t' = v because of the domination lemma.

Therefore, t’ is a goal state.

Further Properties
©00000

Further Properties

Domination Lemma ation Lemma Further Properties e Algorithm
o) 5 [o] YoloYole)

Further Properties of Delete Relaxation

m The relaxation lemma is the main technical result
that we will use to study delete relaxation.

m Next, we derive some further properties of delete relaxation
that will be useful for us.

m Two of these are direct consequences of the relaxation lemma.

Domination Lemma on Lemma Further Properties

[e]e] le]e]e]

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let m be an operator sequence that is applicable in state s.
Then w is applicable in s and s[7 "] dominates s[r].
If w is a plan for 1, then ©+ is a plan for M+.

Apply relaxation lemma with s’ = s.

~ Relaxations of plans are relaxed plans.
~+ Delete relaxation is no harder to solve than original task.

~ Optimal relaxed plans are never more expensive
than optimal plans for original tasks.

Domination Lemma on Lemma Further Properties e Algorithm

[e]e]e] le]e]

Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s,
and let T be a relaxed operator sequence applicable in s.

Then 7t is applicable in s’ and s'[nt] dominates s[x].

| \

Proof.
Apply relaxation lemma with 7+ for 7,
noting that (7 7)" =7+, O

~ If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s’.

~» Dominating states are always “better” in relaxed tasks.

ion Lemma Further Properties
000000

Jomination Lemma

Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)
Let s be a state in which relaxed operator o™ is applicable.
Then s[o™] dominates s.

Proof.
Since relaxed operators only have positive effects,
we have on(s) C on(s) U addset(effo™), s) = on(s[o™]).

| A\

Ol

~ Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

Further Properties
00000e

Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.

Greedy Algorithm

@000

Greedy Algorithm

Domination Lemma

on Lemma F operties Greedy Algorithm
© 000

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for (V, I, O, ~)

s:=1

=)

loop forever:
if s =~

return 7
else if there is an operator o™ € O™ applicable in s
with s[o™] # s:
Append such an operator ot to 7.
s:=s[o"]
else:
return unsolvable

Domination Lemma >n Lemma F operties Greedy Algorithm

[e]e] o]

Correctness of the Greedy Algorithm

The algorithm is sound:

m If it returns a plan, this is indeed a correct solution.
m If it returns “unsolvable”, the task is indeed unsolvable

m Upon termination, there clearly is no relaxed plan from s.
m By iterated application of the monotonicity lemma,
s dominates /.

m By the relaxation lemma, there is no solution from /.

What about completeness (termination) and runtime?
m Each iteration of the loop adds at least one atom to on(s).
m This guarantees termination after at most |V/| iterations.

m Thus, the algorithm can clearly be implemented
to run in polynomial time.

m A good implementation runs in O(]|M]]).

Domination Lemma

on Lemma B operties Greedy Algorithm
@ ocooe

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search:

m When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

m When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal ¢.

m Set h(s) to the cost of the generated relaxed plan.

Is this an admissible heuristic?

m Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

m However, usually they are not, because our greedy
relaxed planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)

[Je]

Summary

Domination Lemma Y ion Lemma ro e Algorithm Summary

oe

Summary

m Delete relaxation is a simplification in the sense that it is
never harder to solve a relaxed task than the original one.

m Delete-relaxed tasks have a domination property:
it is always beneficial to make more state variables true.

m Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

m However, the solution quality of this algorithm is poor.

	The Domination Lemma
	

	The Relaxation Lemma
	

	Further Properties
	

	Greedy Algorithm
	

	Summary
	

