Planning and Optimization
C2. Delete Relaxation: Properties of Relaxed Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

1/28

Planning and Optimization
— C2. Delete Relaxation: Properties of Relaxed Planning Tasks

C2.1 The Domination Lemma
C2.2 The Relaxation Lemma
C2.3 Further Properties

C2.4 Greedy Algorithm

C2.5 Summary

Content of this Course

—I Foundations |

—I Logic |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

3/28

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 2 /28
Content of this Course: Heuristics
Delete Relaxation I——| Relaxed Tasks
- Relaxed
Abstraction | Tk @raplis
] Relaxation
---------------------------- Heuristics
. Landmarks
..................... . i Network 3
Constraints i
pasaasaa—————EE FlOWS vvvvvvvvvvv
Potential ‘
,,,,,,, Heuristics
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 4 /28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks

C2.1 The Domination Lemma

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The Domination Lemma

/ 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Domination Lemma

On-Set and Dominating States

Definition (On-Set)
The on-set of a valuation s is the set of propositional variables
that are true in s, i.e., on(s) = s 1({T}).

~ for states of propositional planning tasks:
states can be viewed as sets of (true) state variables

Definition (Dominate)
A valuation s’ dominates a valuation s if on(s) C on(s’).

~ all state variables true in s are also true in s’

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 6 /28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks

Domination Lemma (1)

Lemma (Domination)

Let s and s' be valuations of a set of propositional variables V,
and let x be a propositional formula over V
which does not contain negation symbols.

If s = x and s’ dominates s, then s’ = x.

Proof.
Proof by induction over the structure of ¥.

> Base case x = T: thens’' = T.
> Base case y = L: then s |~ L.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The Domination Lemma

/ 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Domination Lemma

Domination Lemma (2)

Proof (continued).
» Base case y = v € V: if s |=v, then v € on(s).
With on(s) C on(s’), we get v € on(s’) and hence s’ = v.

» Inductive case y = x1 /A x2: by induction hypothesis, our
claim holds for the proper subformulas x1 and x» of x.

s Ex = s ExiAxe
o s Exiands Ex2
'+ ogice) s'Ex1and s’ Exo
= s' | x1 A x2
= s = x.

P Inductive case x = x1 V x2: analogous

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 8 /28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)
Consider a propositional planning task with state variables V.
Let e be an effect over V, and let s be a state over V.

C22 The Relaxation Lemma The add set of e in s, written addset(e, s),

and the delete set of e in s, written delset(e, s),
are defined as the following sets of state variables:

addset(e,s) = {v € V| s |= effcond(v, e)}
delset(e,s) = {v € V | s = effcond(—v, e)}

Note: For all states s and operators o applicable in s, we have
on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff{ 0), s).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 9 /28 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 10 / 28
C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma
Relaxation Lemma Proof of Relaxation Lemma (1)

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form. Proof.

. Let V be the set of state variables.
Lemma (Relaxation)

Let s be a state, and let s' be a state that dominates s. Part 1: Because o is applicable in s, we have s |= pre(o).
Because pre(0) is negation-free and s’ dominates s,

© /f o is an operator applicable in s, 2
we get s’ = pre(o) from the domination lemma.

then o' is applicable in s’ and s'[o™] dominates s[o].

@ If 7 is an operator sequence applicable in s, Because pre(o™t) = pre(o), this shows that o™ is applicable in s'.

then m is applicable in s' and s'[n"] dominates s[r].

© If additionally 7 leads to a goal state from state s,
then 7t leads to a goal state from state s'.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 11 /28 M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 12 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s'[o™] dominates s[o],
we first compare the relevant add sets:

addset(eff(0),s) = {v € V| s |= effcond(v, eff0))}
= {v € V| s | effcond(v,eff07))} (1)
C{ve V|5 [effcond(v,ef0o™))} (2)
= addset(effo™),s),
where (1) uses effcond(v, eff(0)) = effcond(v, effo™))

and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 13 /28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks

Proof of Relaxation Lemma (3)

Proof (continued).
We then get:

on(s[o]) = (on(s) \ delset(eff{0), s)) U addset(eff(0), s)
on(s) U addset(eff(0), s)

on(s') U addset(eff0™), s)

= on(s'[o"]),

-
-

and thus s’[o™] dominates s[o].

This concludes the proof of Part 1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The Relaxation Lemma

14 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Proof of Relaxation Lemma (4)

Proof (continued).
Part 2: by induction over n = |r|
Base case: m = ()

The empty plan is trivially applicable in s’, and
s'[()*] = s’ dominates s[()] = s by prerequisite.

Inductive case: m = (01,...,0p41)
By the induction hypothesis, (o], ...,0,) is applicable in s,
and t' = s'[(o], ..., 0)] dominates t = s[{o1,...,0n)].

Also, op11 is applicable in t.

Using Part 1, 0,7 ; is applicable in t’ and s'[7] = [0}, ,]
dominates s[r] = t[on+1]-

This concludes the proof of Part 2.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 15 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks

Proof of Relaxation Lemma (5)

Proof (continued).
Part 3: Let v be the goal formula.

From Part 2, we obtain that t’ = s'[7"] dominates t = s[[r].
By prerequisite, t is a goal state and hence t |= .

Because the task is in positive normal form, «y is negation-free,
and hence t’' |= 7 because of the domination lemma.

Therefore, t' is a goal state.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

The Relaxation Lemma

16 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Further Properties

C2.3 Further Properties

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 17 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Further Properties

Further Properties of Delete Relaxation

» The relaxation lemma is the main technical result
that we will use to study delete relaxation.

> Next, we derive some further properties of delete relaxation
that will be useful for us.

> Two of these are direct consequences of the relaxation lemma.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 18 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Further Properties

Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let m be an operator sequence that is applicable in state s.
Then " is applicable in s and s[rn™] dominates s[[r].
If is a plan for 1, then 7™ is a plan for M.

Proof.
Apply relaxation lemma with s’ = s.]

~~ Relaxations of plans are relaxed plans.
~ Delete relaxation is no harder to solve than original task.

~ Optimal relaxed plans are never more expensive
than optimal plans for original tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 19 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Further Properties

Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s' be a state that dominates s,
and let 7T be a relaxed operator sequence applicable in s.

Then 7 is applicable in s’ and s'[7 "] dominates s[n].

Proof.
Apply relaxation lemma with 7+ for 7,
noting that (7 +)" = x. O

~> If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s’.

~» Dominating states are always “better” in relaxed tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 20 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Further Properties

Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)

Let s be a state in which relaxed operator o™ is applicable.
Then s[o™] dominates s.

Proof.
Since relaxed operators only have positive effects,
we have on(s) C on(s) U addset(effo™),s) = on(s[o™]). O

~ Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 21 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks

Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Further Properties

22 /28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Greedy Algorithm

C2.4 Greedy Algorithm

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 23 /28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Greedy Algorithm

Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for (V [, 0", ~)
s:=1
=)
loop forever:
if s =~
return 7
else if there is an operator o™ € O™ applicable in s
with s[o™] # s:
Append such an operator ot to wT.
s :=sfot]
else:
return unsolvable

+

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

24 /28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks

Correctness of the Greedy Algorithm

The algorithm is sound:

P If it returns a plan, this is indeed a correct solution.
> If it returns “unsolvable”, the task is indeed unsolvable

> Upon termination, there clearly is no relaxed plan from s.
> By iterated application of the monotonicity lemma,

s dominates /.
» By the relaxation lemma, there is no solution from /.

What about completeness (termination) and runtime?
» Each iteration of the loop adds at least one atom to on(s).

» This guarantees termination after at most |V/| iterations.

» Thus, the algorithm can clearly be implemented
to run in polynomial time.

> A good implementation runs in O(||M|]).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 25

Greedy Algorithm

28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Greedy Algorithm

Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search:

» When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

» When evaluating a subgoal ¢ in regression search,
solve relaxation of planning task with goal .

> Set h(s) to the cost of the generated relaxed plan.

Is this an admissible heuristic?

> Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

» However, usually they are not, because our greedy
relaxed planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 26 / 28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Summary

C2.5 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization 27 /

28

C2. Delete Relaxation: Properties of Relaxed Planning Tasks Summary

Summary

» Delete relaxation is a simplification in the sense that it is
never harder to solve a relaxed task than the original one.

» Delete-relaxed tasks have a domination property:
it is always beneficial to make more state variables true.

» Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

» However, the solution quality of this algorithm is poor.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 28 / 28

	The Domination Lemma
	

	The Relaxation Lemma
	

	Further Properties
	

	Greedy Algorithm
	

	Summary
	

