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On-Set and Dominating States

Definition (On-Set)

The on-set of a valuation s is the set of propositional variables
that are true in s, i.e., on(s) = s−1({T}).

 for states of propositional planning tasks:

 

states can be viewed as sets of (true) state variables

Definition (Dominate)

A valuation s ′ dominates a valuation s if on(s) ⊆ on(s ′).

 all state variables true in s are also true in s ′
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Domination Lemma (1)

Lemma (Domination)

Let s and s ′ be valuations of a set of propositional variables V ,
and let χ be a propositional formula over V
which does not contain negation symbols.

If s |= χ and s ′ dominates s, then s ′ |= χ.

Proof.
Proof by induction over the structure of χ.

I Base case χ = >: then s ′ |= >.

I Base case χ = ⊥: then s 6|= ⊥.

. . .
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Domination Lemma (2)

Proof (continued).

I Base case χ = v ∈ V : if s |= v , then v ∈ on(s).
With on(s) ⊆ on(s ′), we get v ∈ on(s ′) and hence s ′ |= v .

I Inductive case χ = χ1 ∧ χ2: by induction hypothesis, our
claim holds for the proper subformulas χ1 and χ2 of χ.

s |= χ =⇒ s |= χ1 ∧ χ2

=⇒ s |= χ1 and s |= χ2

I.H. (twice)
=⇒ s ′ |= χ1 and s ′ |= χ2

=⇒ s ′ |= χ1 ∧ χ2

=⇒ s ′ |= χ.

I Inductive case χ = χ1 ∨ χ2: analogous
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Add Sets and Delete Sets

Definition (Add Set and Delete Set for an Effect)

Consider a propositional planning task with state variables V .
Let e be an effect over V , and let s be a state over V .
The add set of e in s, written addset(e, s),
and the delete set of e in s, written delset(e, s),
are defined as the following sets of state variables:

addset(e, s) = {v ∈ V | s |= effcond(v , e)}
delset(e, s) = {v ∈ V | s |= effcond(¬v , e)}

Note: For all states s and operators o applicable in s, we have
on(sJoK) = (on(s) \ delset(eff(o), s)) ∪ addset(eff(o), s).
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Relaxation Lemma

For this and the following chapters on delete relaxation,
we assume implicitly that we are working with
propositional planning tasks in positive normal form.

Lemma (Relaxation)

Let s be a state, and let s ′ be a state that dominates s.

1 If o is an operator applicable in s,
then o+ is applicable in s ′ and s ′Jo+K dominates sJoK.

2 If π is an operator sequence applicable in s,
then π+ is applicable in s ′ and s ′Jπ+K dominates sJπK.

3 If additionally π leads to a goal state from state s,
then π+ leads to a goal state from state s ′.
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Proof of Relaxation Lemma (1)

Proof.
Let V be the set of state variables.

Part 1: Because o is applicable in s, we have s |= pre(o).

Because pre(o) is negation-free and s ′ dominates s,
we get s ′ |= pre(o) from the domination lemma.

Because pre(o+) = pre(o), this shows that o+ is applicable in s ′.
. . .

M. Helmert, G. Röger (Universität Basel) Planning and Optimization 12 / 28



C2. Delete Relaxation: Properties of Relaxed Planning Tasks The Relaxation Lemma

Proof of Relaxation Lemma (2)

Proof (continued).

To prove that s ′Jo+K dominates sJoK,
we first compare the relevant add sets:

addset(eff(o), s) = {v ∈ V | s |= effcond(v , eff(o))}
= {v ∈ V | s |= effcond(v , eff(o+))} (1)

⊆ {v ∈ V | s ′ |= effcond(v , eff(o+))} (2)

= addset(eff(o+), s ′),

where (1) uses effcond(v , eff(o)) ≡ effcond(v , eff(o+))
and (2) uses the dominance lemma (note that effect conditions
are negation-free for operators in positive normal form). . . .
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Proof of Relaxation Lemma (3)

Proof (continued).

We then get:

on(sJoK) = (on(s) \ delset(eff(o), s)) ∪ addset(eff(o), s)

⊆ on(s) ∪ addset(eff(o), s)

⊆ on(s ′) ∪ addset(eff(o+), s ′)

= on(s ′Jo+K),

and thus s ′Jo+K dominates sJoK.

This concludes the proof of Part 1. . . .
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Proof of Relaxation Lemma (4)

Proof (continued).

Part 2: by induction over n = |π|

Base case: π = 〈〉
The empty plan is trivially applicable in s ′, and
s ′J〈〉+K = s ′ dominates sJ〈〉K = s by prerequisite.

Inductive case: π = 〈o1, . . . , on+1〉
By the induction hypothesis, 〈o+1 , . . . , o+n 〉 is applicable in s ′,
and t ′ = s ′J〈o+1 , . . . , o+n 〉K dominates t = sJ〈o1, . . . , on〉K.
Also, on+1 is applicable in t.

Using Part 1, o+n+1 is applicable in t ′ and s ′Jπ+K = t ′Jo+n+1K
dominates sJπK = tJon+1K.

This concludes the proof of Part 2. . . .
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Proof of Relaxation Lemma (5)

Proof (continued).

Part 3: Let γ be the goal formula.

From Part 2, we obtain that t ′ = s ′Jπ+K dominates t = sJπK.
By prerequisite, t is a goal state and hence t |= γ.

Because the task is in positive normal form, γ is negation-free,
and hence t ′ |= γ because of the domination lemma.

Therefore, t ′ is a goal state.
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Further Properties of Delete Relaxation

I The relaxation lemma is the main technical result
that we will use to study delete relaxation.

I Next, we derive some further properties of delete relaxation
that will be useful for us.

I Two of these are direct consequences of the relaxation lemma.
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Consequences of the Relaxation Lemma (1)

Corollary (Relaxation Preserves Plans and Leads to Dominance)

Let π be an operator sequence that is applicable in state s.
Then π+ is applicable in s and sJπ+K dominates sJπK.
If π is a plan for Π, then π+ is a plan for Π+.

Proof.

Apply relaxation lemma with s ′ = s.

 Relaxations of plans are relaxed plans.

 Delete relaxation is no harder to solve than original task.

 Optimal relaxed plans are never more expensive
than optimal plans for original tasks.
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Consequences of the Relaxation Lemma (2)

Corollary (Relaxation Preserves Dominance)

Let s be a state, let s ′ be a state that dominates s,
and let π+ be a relaxed operator sequence applicable in s.

Then π+ is applicable in s ′ and s ′Jπ+K dominates sJπ+K.

Proof.

Apply relaxation lemma with π+ for π,
noting that (π+)+ = π+.

 If there is a relaxed plan starting from state s,
the same plan can be used starting from a dominating state s ′.

 Dominating states are always “better” in relaxed tasks.
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Monotonicity of Relaxed Planning Tasks

Lemma (Monotonicity)

Let s be a state in which relaxed operator o+ is applicable.
Then sJo+K dominates s.

Proof.
Since relaxed operators only have positive effects,
we have on(s) ⊆ on(s) ∪ addset(eff(o+), s) = on(sJo+K).

 Together with our previous results, this means that
making a transition in a relaxed planning task never hurts.
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Finding Relaxed Plans

Using the theory we developed, we are now ready to study
the problem of finding plans for relaxed planning tasks.
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C2.4 Greedy Algorithm
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Greedy Algorithm for Relaxed Planning Tasks

The relaxation and monotonicity lemmas suggest the following
algorithm for solving relaxed planning tasks:

Greedy Planning Algorithm for 〈V , I ,O+, γ〉
s := I
π+ := 〈〉
loop forever:

if s |= γ:
return π+

else if there is an operator o+ ∈ O+ applicable in s
with sJo+K 6= s:

Append such an operator o+ to π+.
s := sJo+K

else:
return unsolvable
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Correctness of the Greedy Algorithm

The algorithm is sound:

I If it returns a plan, this is indeed a correct solution.
I If it returns “unsolvable”, the task is indeed unsolvable

I Upon termination, there clearly is no relaxed plan from s.
I By iterated application of the monotonicity lemma,

s dominates I .
I By the relaxation lemma, there is no solution from I .

What about completeness (termination) and runtime?

I Each iteration of the loop adds at least one atom to on(s).

I This guarantees termination after at most |V | iterations.

I Thus, the algorithm can clearly be implemented
to run in polynomial time.
I A good implementation runs in O(‖Π‖).
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Using the Greedy Algorithm as a Heuristic

We can apply the greedy algorithm within heuristic search:

I When evaluating a state s in progression search,
solve relaxation of planning task with initial state s.

I When evaluating a subgoal ϕ in regression search,
solve relaxation of planning task with goal ϕ.

I Set h(s) to the cost of the generated relaxed plan.

Is this an admissible heuristic?

I Yes if the relaxed plans are optimal
(due to the plan preservation corollary).

I However, usually they are not, because our greedy
relaxed planning algorithm is very poor.

(What about safety? Goal-awareness? Consistency?)
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C2.5 Summary
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Summary

I Delete relaxation is a simplification in the sense that it is
never harder to solve a relaxed task than the original one.

I Delete-relaxed tasks have a domination property:
it is always beneficial to make more state variables true.

I Because of their monotonicity property, delete-relaxed tasks
can be solved in polynomial time by a greedy algorithm.

I However, the solution quality of this algorithm is poor.
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