
Planning and Optimization
B8. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Röger

Universität Basel



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Devising a Symbolic Search Algorithm

We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.

use BDDs as a black box data structure:

care about provided operations and their time complexity
do not care about their internal implementation

Efficient implementations are available as libraries, e.g.:

CUDD, a high-performance BDD library
libbdd, shipped with Ubuntu Linux



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Basic BDD Operations



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations: Preliminaries

All BDDs work on a fixed and totally ordered
set of propositional variables.

Complexity of operations given in terms of:

k , the number of BDD variables
‖B‖, the number of nodes in the BDD B



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (1)

BDD operations: logical/set atoms

bdd-true(): build BDD representing all assignments

in logic: >
time complexity: O(1)

bdd-false(): build BDD representing ∅
in logic: ⊥
time complexity: O(1)

bdd-atom(v): build BDD representing {s | s(v) = 1}
in logic: v
time complexity: O(1)



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (2)

BDD operations: logical/set connectives

bdd-complement(B): build BDD representing r(B)

in logic: ¬ϕ
time complexity: O(‖B‖)

bdd-union(B, B ′): build BDD representing r(B) ∪ r(B ′)

in logic: (ϕ ∨ ψ)
time complexity: O(‖B‖ · ‖B ′‖)

analogously:

bdd-intersection(B, B ′): r(B) ∩ r(B ′), (ϕ ∧ ψ)
bdd-setdifference(B, B ′): r(B) \ r(B ′), (ϕ ∧ ¬ψ)
bdd-implies(B, B ′): r(B) ∪ r(B ′), (ϕ→ ψ)
bdd-equiv(B, B ′): (r(B) ∩ r(B ′)) ∪ (r(B) ∩ r(B ′)), (ϕ↔ ψ)



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (3)

BDD operations: Boolean tests

bdd-includes(B, I ): return true iff I ∈ r(B)

in logic: I |= ϕ?
time complexity: O(k)

bdd-equals(B, B ′): return true iff r(B) = r(B ′)

in logic: ϕ ≡ ψ?
time complexity: O(1) (due to canonical representation)



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ϕ to T or F,
written ϕ[T/v ] or ϕ[F/v ], means restricting v
to a particular truth value:

Examples:

(A ∧ (B ∨ ¬C ))[T/B] = (A ∧ (> ∨ ¬C )) ≡ A

(A ∧ (B ∨ ¬C ))[F/B] = (A ∧ (⊥ ∨ ¬C )) ≡ A ∧ ¬C



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S :
S [F/v ] and S [T/v ] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
 S [T/B] = {{A 7→ T,C 7→ F},

S [T/B] = {

{A 7→ T,C 7→ T}}



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as ∃v ϕ (for formulas) and ∃v S (for sets).

Formally:

∃v ϕ = ϕ[T/v ] ∨ ϕ[F/v ]

∃v S = S [T/v ] ∪ S [F/v ]



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Forgetting: Example

Examples:

S = {{A 7→ F,B 7→ F,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ F},

S = {

{A 7→ T,B 7→ T,C 7→ T}}
 ∃B S = {{A 7→ F,C 7→ F},

∃B S = {

{A 7→ T,C 7→ F},

∃B S = {

{A 7→ T,C 7→ T}}
 ∃C S = {{A 7→ F,B 7→ F},

∃C S = {

{A 7→ T,B 7→ T}}



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

BDD Operations (4)

BDD operations: conditioning and forgetting

bdd-condition(B, v , t) where t ∈ {T,F}:
build BDD representing r(B)[t/v ]

in logic: ϕ[t/v ]
time complexity: O(‖B‖)

bdd-forget(B, v):
build BDD representing ∃v r(B)

in logic: ∃v ϕ (= ϕ[T/v ] ∨ ϕ[F/v ])
time complexity: O(‖B‖2)



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Formulas and Singletons



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Formulas to BDDs

With the logical/set operations, we can convert propositional
formulas ϕ into BDDs representing the models of ϕ.

We denote this computation with bdd-formula(ϕ).

Each individual logical connective takes polynomial time,
but converting a full formula of length n can take O(2n) time.
(How is this possible?)



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Singleton BDDs

We can convert a single truth assignment I
into a BDD representing {I} by computing
the conjunction of all literals true in I
(using bdd-atom, bdd-complement and bdd-intersection).

We denote this computation with bdd-singleton(I ).

When done in the correct order, this takes time O(k).



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Renaming



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ϕ, written ϕ[X → Y ],
means replacing all occurrences of X by Y in ϕ.

We require that Y is not present in ϕ initially.

Example:

ϕ = (A ∧ (B ∨ ¬C ))

 ϕ[A→ D] = (D ∧ (B ∨ ¬C ))



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

How Hard Can That Be?

For formulas, renaming is a simple (linear-time) operation.

For a BDD B, it is equally simple (O(‖B‖)) when renaming
between variables that are adjacent in the variable order.

In general, it requires O(‖B‖2), using the equivalence
ϕ[X → Y ] ≡ ∃X (ϕ ∧ (X ↔ Y ))



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Symbolic Breadth-first Search



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Planning Task State Variables vs. BDD Variables

Consider propositional planning task 〈V , I ,O, γ〉 with states S .

In symbolic planning, we have two BDD variables v and v ′

for every state variable v ∈ V of the planning task.

use unprimed variables v to describe sets of states:
{s ∈ S | some property}
use combinations of unprimed and primed variables v , v ′

to describe sets of state pairs:
{〈s, s ′〉 | some property}



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-formula.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-singleton.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-intersection, bdd-false, bdd-equals.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-union.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

Use bdd-equals.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

How to do this?



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (1)

We need an operation that

for a set of states reached (given as a BDD)

and a set of operators O

computes the set of states (as a BDD) that can be reached
by applying some operator o ∈ O in some state s ∈ reached.

We have seen something similar already. . .



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Translating Operators into Formulas

Definition (Operators in Propositional Logic)

Let o be an operator and V a set of state variables.

Define τV (o) := pre(o) ∧
∧

v∈V (regr(v , eff(o))↔ v ′).

States that o is applicable and describes how

the new value of v , represented by v ′,

must relate to the old state, described by variables V .



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (2)

The formula τV (o) describes all transitions s
o−→ s ′

induced by a single operator o
in terms of variables V describing s
and variables V ′ describing s ′.

The formula
∨

o∈O τV (o) describes state transitions
by any operator in O.

We can translate this formula to a BDD
(over variables V ∪ V ′) with bdd-formula.

The resulting BDD is called the transition relation
of the planning task, written as TV (O).



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs 〈s, s ′〉 where s ′ is a successor
of s in terms of variables V ∪ V ′.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of state pairs 〈s, s ′〉 where s ′ is a successor
of s and s ∈ reached in terms of variables V ∪ V ′.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V ′.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

This describes the set of states s ′ which are successors
of some state s ∈ reached in terms of variables V .



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

The apply Function (3)

Using the transition relation, we can compute apply(reached,O)
as follows:

The apply function

def apply(reached, O):
B := TV (O)
B := bdd-intersection(B, reached)
for each v ∈ V :

B := bdd-forget(B, v)
for each v ∈ V :

B := bdd-rename(B, v ′, v)
return B

Thus, apply indeed computes the set of successors of reached
using operators O.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Discussion



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Discussion

This completes the discussion of a (basic)
symbolic search algorithm for classical planning.

We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.

In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Variable Orders

For good performance, we need a good variable ordering.

Variables that refer to the same state variable
before and after operator application (v and v ′)
should be neighbors in the transition relation BDD.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Finite-Domain Variables and Variable Orders

The algorithm can easily be extended to FDR tasks
by using dlog2 ne BDD variables to represent
a state variable with n possible values.

Variables related to the same FDR variable
should be kept together in the BDD variable ordering
(but still interleaving primed and unprimed variables).

Automatic conversion from STRIPS to SAS+

was first explored in the context of symbolic search.

It was found critical for performance.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Extensions

Symbolic search can be extended to. . .

regression and bidirectional search:
this is very easy and often effective

uniform-cost search:
requires some work, but not too difficult in principle

heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Literature

Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677–691, 1986.
Reduced ordered BDDs.

Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

Álvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Summary



Basic BDD Operations Formulas and Singletons Renaming Symbolic Breadth-first Search Discussion Summary

Summary

Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

State sets and transition relations can be represented
as BDDs.

Based on this, we can implement a blind breadth-first search
in an efficient way.

A good variable ordering is crucial for performance.


	Basic BDD Operations
	

	Formulas and Singletons
	

	Renaming
	

	Symbolic Breadth-first Search
	

	Discussion
	

	Summary
	


