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Devising a Symbolic Search Algorithm

» We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
» use BDDs as a black box data structure:
P care about provided operations and their time complexity
» do not care about their internal implementation
> Efficient implementations are available as libraries, e.g.:

» CUDD, a high-performance BDD library
> libbdd, shipped with Ubuntu Linux
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B8.1 Basic BDD Operations
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BDD Operations: Preliminaries

> All BDDs work on a fixed and totally ordered
set of propositional variables.
» Complexity of operations given in terms of:

» k, the number of BDD variables
> ||B]|, the number of nodes in the BDD B
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BDD Operations (1)

BDD operations: logical/set atoms

» bdd-true(): build BDD representing all assignments
» in logic: T
> time complexity: O(1)

» bdd-false(): build BDD representing ()
> in logic: L
> time complexity: O(1)

» bdd-atom(v): build BDD representing {s | s(v) = 1}
> in logic: v
> time complexity: O(1)
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BDD Operations (2)

BDD operations: logical/set connectives

» bdd-complement(B): build BDD representing r(B)
> in logic: ¢
> time complexity: O(||B||)
» bdd-union(B, B’): build BDD representing r(B) U r(B’)
> in logic: (¢ Vv)
> time complexity: O(||B|| - |B’]])
> analogously:
» bdd-intersection(B, B"): r(B)Nr(B’), (¢ A1)
> bdd-setdifference(B, B"): r(B)\ r(B’), (¢ A =)
» bdd-implies(B, B'): r(B)Ur(B'), (¢ =)
> bdd-equiv(B, B'): (r(B)Nr(B))U(r(B)Nr(B")), (¢ < 1)
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BDD Operations (3)

BDD operations: Boolean tests
» bdd-includes(B, /): return true iff | € r(B)
> in logic: | |= 7
> time complexity: O(k)
» bdd-equals(B, B'): return true iff r(B) = r(B’)
> in logic: ¢ =7
> time complexity: O(1) (due to canonical representation)
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Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written ¢[T/v] or ¢[F/v], means restricting v
to a particular truth value:

Examples:
> (AN(BV=C)[T/Bl=(AAN(TV-C)=A
» (AN(BV-C))[F/Bl=(AAN(LV-C)=AAN-C

B8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

» S={{A—F,B—F,C— F},
{A—»T,B—T,C+— F},
{A-T,B—T,C—T}}

~ S[T/B]={{A—T,C+— F},

{A=-T,C—T}}
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Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and Jv S (for sets).

Formally:
> v =[T/v]Vg[F/v]
» JvS=S[T/v]USI[F/v]
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Forgetting: Example

Examples:

» S={{A—F,B—F, C— F},
{A»T,B—T,C+— F},
{A-T,B—~T,C—T}}

- 3BS={{A—F,C+— F},

{A—T,C— F},
{A=T,C—T}}
~ ACS={{A— F,B — F},
{A=»T,B—T}}
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BDD Operations (4)

Basic BDD Operations

BDD operations: conditioning and forgetting
» bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]
> in logic: ¢[t/Vv]
> time complexity: O(||B||)
» bdd-forget(B, v):
build BDD representing Jv r(B)
> inlogic: v (= ¢[T/v]V ¢[F/v])
> time complexity: O(||B||?)
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B8.2 Formulas and Singletons
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Formulas to BDDs

Formulas and Singletons

» With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of ¢.

» We denote this computation with bdd-formula(y).

» Each individual logical connective takes polynomial time,

but converting a full formula of length n can take O(2") time.
(How is this possible?)
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Singleton BDDs

Formulas and Singletons

P> We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

» We denote this computation with bdd-singleton(/).
» When done in the correct order, this takes time O(k).
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B8.3 Renaming
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Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written p[X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
> o =(AN(BV~C())
~ @[A— D] =(DAN(BV-C))
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How Hard Can That Be?

» For formulas, renaming is a simple (linear-time) operation.
» For a BDD B, it is equally simple (O(]|B||)) when renaming
between variables that are adjacent in the variable order.

> In general, it requires O(||B||?), using the equivalence
e[X = Y] =3IX(eA (X < Y))
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B8.4 Symbolic Breadth-first Search
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1
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Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V,/, O,~) with states S.

In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.

» use unprimed variables v to describe sets of states:
{s € § | some property}

> use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:

{(s,s’) | some property}
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-formula.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-singleton.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-union.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 27 / 46

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-false, bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-equals.
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Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i =0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

How to do this?
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The apply Function (1)

We need an operation that
> for a set of states reached (given as a BDD)
» and a set of operators O

> computes the set of states (as a BDD) that can be reached
by applying some operator o € O in some state s € reached.

We have seen something similar already. ..
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Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.

Define 7v(0) := pre(o) A A\, c\/ (regr(v, eff0)) < Vv').

States that o is applicable and describes how
» the new value of v, represented by v/,
P> must relate to the old state, described by variables V.
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The apply Function (2)

» The formula 7y(0) describes all transitions s > s’
» induced by a single operator o
» in terms of variables V' describing s
» and variables V' describing s’.
» The formula \/,.o 7v(0) describes state transitions
by any operator in O.
» We can translate this formula to a BDD
(over variables V U V') with bdd-formula.

» The resulting BDD is called the transition relation
of the planning task, written as T\/(O).
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B = T\/(O)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V',
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V',
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.
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The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
Thus, apply indeed computes the set of successors of reached
using operators O.
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B8.5 Discussion
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Discussion

» This completes the discussion of a (basic)
symbolic search algorithm for classical planning.
» We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.
» In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.
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Variable Orders

For good performance, we need a good variable ordering.

> Variables that refer to the same state variable
before and after operator application (v and V')
should be neighbors in the transition relation BDD.
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Finite-Domain Variables and Variable Orders

The algorithm can easily be extended to FDR tasks
by using [log, n] BDD variables to represent
a state variable with n possible values.
P Variables related to the same FDR variable
should be kept together in the BDD variable ordering
(but still interleaving primed and unprimed variables).
» Automatic conversion from STRIPS to SAS™
was first explored in the context of symbolic search.

» It was found critical for performance.
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Extensions

Symbolic search can be extended to. ..

P regression and bidirectional search:
this is very easy and often effective

» uniform-cost search:
requires some work, but not too difficult in principle

» heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 43 / 46

B8. Symbolic Search: Full Algorithm

Literature

[@ Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677-691, 1986.
Reduced ordered BDDs.

@ Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

@ Alvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Discussion

44 | 46




B8. Symbolic Search: Full Algorithm

B8.6 Summary
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Summary

» Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

> State sets and transition relations can be represented

as BDDs.

» Based on this, we can implement a blind breadth-first search

in an efficient way.

» A good variable ordering is crucial for performance.
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