Planning and Optimization
B8. Symbolic Search: Full Algorithm

Malte Helmert and Gabriele Roger

Universitat Basel

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

1/ 46

Planning and Optimization
— B8. Symbolic Search: Full Algorithm

B8.1 Basic BDD Operations

B8.2 Formulas and Singletons
B8.3 Renaming

B8.4 Symbolic Breadth-first Search
B8.5 Discussion

B8.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 2 /46

Content of this Course

—1 Foundations ‘

—{ Heuristics ‘

—1 Constraints ‘

Explicit MDPs |

Probabilistic

Factored MDPs ‘

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

3 /46

Devising a Symbolic Search Algorithm

» We now put the pieces together to build
a symbolic search algorithm for propositional planning tasks.
» use BDDs as a black box data structure:
P care about provided operations and their time complexity
» do not care about their internal implementation
> Efficient implementations are available as libraries, e.g.:

» CUDD, a high-performance BDD library
> libbdd, shipped with Ubuntu Linux

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 4/ 46

B8. Symbolic Search: Full Algorithm

B8.1 Basic BDD Operations

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Basic BDD Operations

B8. Symbolic Search: Full Algorithm

BDD Operations: Preliminaries

> All BDDs work on a fixed and totally ordered
set of propositional variables.
» Complexity of operations given in terms of:

» k, the number of BDD variables
> ||B]|, the number of nodes in the BDD B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Basic BDD Operations

B8. Symbolic Search: Full Algorithm

BDD Operations (1)

BDD operations: logical/set atoms

» bdd-true(): build BDD representing all assignments
» in logic: T
> time complexity: O(1)

» bdd-false(): build BDD representing ()
> in logic: L
> time complexity: O(1)

» bdd-atom(v): build BDD representing {s | s(v) = 1}
> in logic: v
> time complexity: O(1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Basic BDD Operations

B8. Symbolic Search: Full Algorithm

BDD Operations (2)

BDD operations: logical/set connectives

» bdd-complement(B): build BDD representing r(B)
> in logic: ¢
> time complexity: O(||B||)
» bdd-union(B, B’): build BDD representing r(B) U r(B’)
> in logic: (¢ Vv)
> time complexity: O(||B|| - |B’]])
> analogously:
» bdd-intersection(B, B"): r(B)Nr(B’), (¢ A1)
> bdd-setdifference(B, B"): r(B)\ r(B’), (¢ A =)
» bdd-implies(B, B'): r(B)Ur(B'), (¢ =)
> bdd-equiv(B, B'): (r(B)Nr(B))U(r(B)Nr(B")), (¢ < 1)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Basic BDD Operations

B8. Symbolic Search: Full Algorithm Basic BDD Operations

BDD Operations (3)

BDD operations: Boolean tests
» bdd-includes(B, /): return true iff | € r(B)
> in logic: | |= 7
> time complexity: O(k)
» bdd-equals(B, B'): return true iff r(B) = r(B’)
> in logic: ¢ =7
> time complexity: O(1) (due to canonical representation)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 9 / 46

B8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Formulas

The last two basic BDD operations are a bit more unusual
and require some preliminary remarks.

Conditioning a variable v in a formula ¢ to T or F,
written ¢[T/v] or ¢[F/v], means restricting v
to a particular truth value:

Examples:
> (AN(BV=C)[T/Bl=(AAN(TV-C)=A
» (AN(BV-C))[F/Bl=(AAN(LV-C)=AAN-C

B8. Symbolic Search: Full Algorithm Basic BDD Operations

Conditioning: Sets of Assignments

We can define the same operation for sets of assignments S:
S[F/v] and S[T/v] restrict S to elements with the given value
for v and remove v from the domain of definition:

Example:

» S={{A—F,B—F,C— F},
{A—»T,B—T,C+— F},
{A-T,B—T,C—T}}

~ S[T/B]={{A—T,C+— F},

{A=-T,C—T}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 11 / 46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 10 / 46
B8. Symbolic Search: Full Algorithm Basic BDD Operations
Forgetting

Forgetting (a.k.a. existential abstraction) is similar to conditioning:
we allow either truth value for v and remove the variable.

We write this as Jv ¢ (for formulas) and Jv S (for sets).

Formally:
> v =[T/v]Vg[F/v]
» JvS=S[T/v]USI[F/v]

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 12 / 46

B8. Symbolic Search: Full Algorithm Basic BDD Operations

Forgetting: Example

Examples:

» S={{A—F,B—F, C— F},
{A»T,B—T,C+— F},
{A-T,B—~T,C—T}}

- 3BS={{A—F,C+— F},

{A—T,C— F},
{A=T,C—T}}
~ ACS={{A— F,B — F},
{A=»T,B—T}}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 13 / 46

B8. Symbolic Search: Full Algorithm

BDD Operations (4)

Basic BDD Operations

BDD operations: conditioning and forgetting
» bdd-condition(B, v, t) where t € {T,F}:
build BDD representing r(B)[t/v]
> in logic: ¢[t/Vv]
> time complexity: O(||B||)
» bdd-forget(B, v):
build BDD representing Jv r(B)
> inlogic: v (= ¢[T/v]V ¢[F/v])
> time complexity: O(||B||?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 14 / 46

B8. Symbolic Search: Full Algorithm Formulas and Singletons

B8.2 Formulas and Singletons

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 15 / 46

B8. Symbolic Search: Full Algorithm

Formulas to BDDs

Formulas and Singletons

» With the logical /set operations, we can convert propositional
formulas ¢ into BDDs representing the models of ¢.

» We denote this computation with bdd-formula(y).

» Each individual logical connective takes polynomial time,

but converting a full formula of length n can take O(2") time.
(How is this possible?)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 16 / 46

B8. Symbolic Search: Full Algorithm

Singleton BDDs

Formulas and Singletons

P> We can convert a single truth assignment /
into a BDD representing {/} by computing
the conjunction of all literals true in /
(using bdd-atom, bdd-complement and bdd-intersection).

» We denote this computation with bdd-singleton(/).
» When done in the correct order, this takes time O(k).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 17 / 46

B8. Symbolic Search: Full Algorithm

B8.3 Renaming

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Renaming

18 / 46

B8. Symbolic Search: Full Algorithm Renaming

Renaming

We will need to support one final operation on formulas: renaming.

Renaming X to Y in formula ¢, written p[X — Y],
means replacing all occurrences of X by Y in ¢.

We require that Y is not present in ¢ initially.

Example:
> o =(AN(BV~C())
~ @[A— D] =(DAN(BV-C))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 19 / 46

B8. Symbolic Search: Full Algorithm

How Hard Can That Be?

» For formulas, renaming is a simple (linear-time) operation.
» For a BDD B, it is equally simple (O(]|B||)) when renaming
between variables that are adjacent in the variable order.

> In general, it requires O(||B||?), using the equivalence
e[X = Y] =3IX(eA (X < Y))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Renaming

20

/ 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

B8.4 Symbolic Breadth-first Search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 21 / 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

23 / 46

Planning Task State Variables vs. BDD Variables

Consider propositional planning task (V,/, O,~) with states S.

In symbolic planning, we have two BDD variables v and v/
for every state variable v € V of the planning task.

» use unprimed variables v to describe sets of states:
{s € § | some property}

> use combinations of unprimed and primed variables v, v/
to describe sets of state pairs:

{(s,s’) | some property}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

22 / 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-formula.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 24 / 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {/}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-singleton.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 25 / 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-union.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 27 / 46

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
=0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

Use bdd-intersection, bdd-false, bdd-equals.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

26 / 46

B8. Symbolic Search: Full Algorithm

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i:=0
loop:
if reached; N goal_states # ():
return solution found
reached; ;1 := reached; U apply(reached;, O)
if reached;,1 = reached;:

return no solution exists
i=i+1

Use bdd-equals.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Symbolic Breadth-first Search

28 / 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Breadth-first Search with Progression and BDDs

Progression Breadth-first Search
def bfs-progression(V, I, O, 7):
goal_states :== models(~y)
reachedy := {I}
i =0
loop:
if reached; N goal_states # ():
return solution found
reached; 1 := reached; U apply(reached;, O)
if reached;,1 = reached;:
return no solution exists
i=i+1

How to do this?

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 29 / 46

B8. Symbolic Search: Full Algorithm

The apply Function (1)

We need an operation that
> for a set of states reached (given as a BDD)
» and a set of operators O

> computes the set of states (as a BDD) that can be reached
by applying some operator o € O in some state s € reached.

We have seen something similar already. ..

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Symbolic Breadth-first Search

30 / 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

Translating Operators into Formulas

Definition (Operators in Propositional Logic)
Let o be an operator and V a set of state variables.

Define 7v(0) := pre(o) A A\, c\/ (regr(v, eff0)) < Vv').

States that o is applicable and describes how
» the new value of v, represented by v/,
P> must relate to the old state, described by variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 31 /46

B8. Symbolic Search: Full Algorithm

The apply Function (2)

» The formula 7y(0) describes all transitions s > s’
» induced by a single operator o
» in terms of variables V' describing s
» and variables V' describing s’.
» The formula \/,.o 7v(0) describes state transitions
by any operator in O.
» We can translate this formula to a BDD
(over variables V U V') with bdd-formula.

» The resulting BDD is called the transition relation
of the planning task, written as T\/(O).

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

32/

Symbolic Breadth-first Search

46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 33 /46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B = T\/(O)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s in terms of variables V U V',

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 34 /46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of state pairs (s, s’) where s’ is a successor
of s and s € reached in terms of variables V U V',

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V’.

35 / 46

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 36 / 46

B8. Symbolic Search: Full Algorithm Symbolic Breadth-first Search

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:= Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
This describes the set of states s’ which are successors
of some state s € reached in terms of variables V.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 37 / 46

B8. Symbolic Search: Full Algorithm

The apply Function (3)

Using the transition relation, we can compute apply(reached, O)
as follows:

The apply function
def apply(reached, O):
B:=Ty(0)
B := bdd-intersection(B, reached)
for each v € V:
B := bdd-forget(B, v)
for each v € V:
B := bdd-rename(B, V', v)
return B
Thus, apply indeed computes the set of successors of reached
using operators O.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Symbolic Breadth-first Search

38 / 46

B8. Symbolic Search: Full Algorithm Discussion

B8.5 Discussion

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 39 / 46

B8. Symbolic Search: Full Algorithm

Discussion

» This completes the discussion of a (basic)
symbolic search algorithm for classical planning.
» We ignored the aspect of solution extraction.
This needs some extra work, but is not a major challenge.
» In practice, some steps can be performed slightly more
efficiently, but these are comparatively minor details.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Discussion

40 / 46

B8. Symbolic Search: Full Algorithm Discussion

Variable Orders

For good performance, we need a good variable ordering.

> Variables that refer to the same state variable
before and after operator application (v and V')
should be neighbors in the transition relation BDD.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 41 / 46

B8. Symbolic Search: Full Algorithm

Finite-Domain Variables and Variable Orders

The algorithm can easily be extended to FDR tasks
by using [log, n] BDD variables to represent
a state variable with n possible values.
P Variables related to the same FDR variable
should be kept together in the BDD variable ordering
(but still interleaving primed and unprimed variables).
» Automatic conversion from STRIPS to SAS™
was first explored in the context of symbolic search.

» It was found critical for performance.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Discussion

42 / 46

B8. Symbolic Search: Full Algorithm Discussion

Extensions

Symbolic search can be extended to. ..

P regression and bidirectional search:
this is very easy and often effective

» uniform-cost search:
requires some work, but not too difficult in principle

» heuristic search:
requires a heuristic representable as a BDD;
has not really been shown to outperform blind symbolic search

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 43 / 46

B8. Symbolic Search: Full Algorithm

Literature

[@ Randal E. Bryant.
Graph-Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers 35.8, pp. 677-691, 1986.
Reduced ordered BDDs.

@ Kenneth L. McMillan.
Symbolic Model Checking.
PhD Thesis, 1993.
Symbolic search with BDDs.

@ Alvaro Torralba.
Symbolic Search and Abstraction Heuristics
for Cost-Optimal Planning.
PhD Thesis, 2015.
State of the art of symbolic search planning.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Discussion

44 | 46

B8. Symbolic Search: Full Algorithm

B8.6 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Summary

45 /

46

B8. Symbolic Search: Full Algorithm

Summary

» Symbolic search operates on sets of states
instead of individual states as in explicit-state search.

> State sets and transition relations can be represented

as BDDs.

» Based on this, we can implement a blind breadth-first search

in an efficient way.

» A good variable ordering is crucial for performance.

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Summary

46 /

46

	Basic BDD Operations
	

	Formulas and Singletons
	

	Renaming
	

	Symbolic Breadth-first Search
	

	Discussion
	

	Summary
	

