

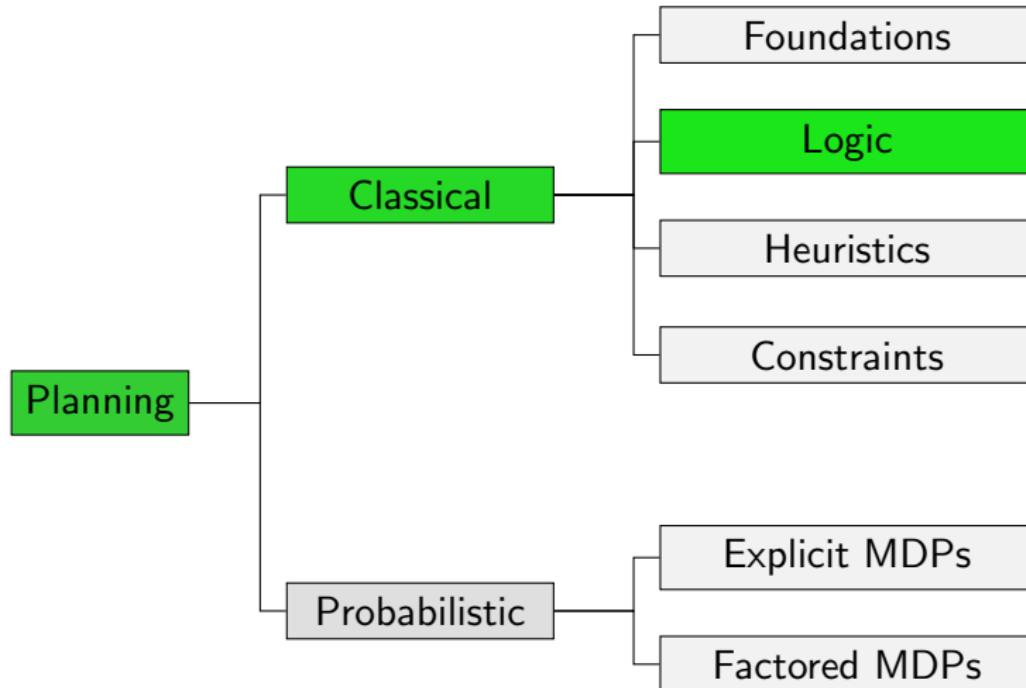
Planning and Optimization

B6. SAT Planning: Parallel Encoding

Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course



Introduction

Efficiency of SAT Planning

- All other things being equal, the most important aspect for efficient SAT solving is the **number of propositional variables** in the input formula.
- For sufficiently difficult inputs, runtime scales **exponentially** in the number of variables.
- ~~> Can we make SAT planning more efficient by **using fewer variables**?

Number of Variables

Reminder:

- given propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$
- given horizon $T \in \mathbb{N}_0$

Variables of the SAT Formula

- propositional variables v^i for all $v \in V$, $0 \leq i \leq T$
encode state after i steps of the plan
- propositional variables o^i for all $o \in O$, $1 \leq i \leq T$
encode operator(s) applied in i -th step of the plan

- ~~ $|V| \cdot (T + 1) + |O| \cdot T$ variables
- ~~ SAT solving runtime usually exponential in T

Parallel Plans and Interference

Can we get away with shorter horizons?

Idea:

- allow **parallel plans** in the SAT encoding:
multiple operators can be applied in the same step
if they do not **interfere**

Definition (Interference)

Let $O' = \{o_1, \dots, o_n\}$ be a set of operators applicable in state s .

We say that O' is **interference-free** in s if

- for all permutations π of O' , $s[\pi]$ is defined, and
- for all permutations π, π' of O' , $s[\pi] = s[\pi']$.

We say that O' **interfere** in s if they are not interference-free in s .

Parallel Plan Extraction

- If we can rule out interference, we can allow multiple operators at the same time in the SAT encoding.
- A parallel plan (with multiple o^i used for the same i) extracted from the SAT formula can then be converted into a “regular” plan by ordering the operators within each time step arbitrarily.

Challenges for Parallel SAT Encodings

Two challenges remain:

- our current SAT encoding **does not allow concurrent operators**
- how do we ensure that our plans are **interference-free**?

Adapting the SAT Encoding

Reminder: Sequential SAT Encoding (1)

Sequential SAT Formula (1)

initial state clauses:

- v^0 for all $v \in V$ with $I(v) = \mathbf{T}$
- $\neg v^0$ for all $v \in V$ with $I(v) = \mathbf{F}$

goal clauses:

- γ^T

operator selection clauses:

- $o_1^i \vee \dots \vee o_n^i$ for all $1 \leq i \leq T$

operator exclusion clauses:

- $\neg o_j^i \vee \neg o_k^i$ for all $1 \leq i \leq T, 1 \leq j < k \leq n$

Reminder: Sequential SAT Encoding (1)

Sequential SAT Formula (1)

initial state clauses:

- v^0 for all $v \in V$ with $I(v) = \mathbf{T}$
- $\neg v^0$ for all $v \in V$ with $I(v) = \mathbf{F}$

goal clauses:

- γ^T

operator selection clauses:

- $o_1^i \vee \dots \vee o_n^i$ for all $1 \leq i \leq T$

operator exclusion clauses:

- $\neg o_j^i \vee \neg o_k^i$ for all $1 \leq i \leq T, 1 \leq j < k \leq n$

⇒ operator exclusion clauses must be adapted

Sequential SAT Encoding (2)

Sequential SAT Formula (2)

precondition clauses:

- $o^i \rightarrow \text{pre}(o)^{i-1}$ for all $1 \leq i \leq T$, $o \in O$

positive and negative effect clauses:

- $(o^i \wedge \alpha^{i-1}) \rightarrow v^i$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$
- $(o^i \wedge \delta^{i-1} \wedge \neg \alpha^{i-1}) \rightarrow \neg v^i$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$

positive and negative frame clauses:

- $(o^i \wedge v^{i-1} \wedge \neg v^i) \rightarrow \delta^{i-1}$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$
- $(o^i \wedge \neg v^{i-1} \wedge v^i) \rightarrow \alpha^{i-1}$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$

where $\alpha = \text{effcond}(v, \text{eff}(o))$, $\delta = \text{effcond}(\neg v, \text{eff}(o))$.

Sequential SAT Encoding (2)

Sequential SAT Formula (2)

precondition clauses:

- $o^i \rightarrow \text{pre}(o)^{i-1}$ for all $1 \leq i \leq T$, $o \in O$

positive and negative effect clauses:

- $(o^i \wedge \alpha^{i-1}) \rightarrow v^i$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$
- $(o^i \wedge \delta^{i-1} \wedge \neg \alpha^{i-1}) \rightarrow \neg v^i$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$

positive and negative frame clauses:

- $(o^i \wedge v^{i-1} \wedge \neg v^i) \rightarrow \delta^{i-1}$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$
- $(o^i \wedge \neg v^{i-1} \wedge v^i) \rightarrow \alpha^{i-1}$ for all $1 \leq i \leq T$, $o \in O$, $v \in V$

where $\alpha = \text{effcond}(v, \text{eff}(o))$, $\delta = \text{effcond}(\neg v, \text{eff}(o))$.

~~> frame clauses must be adapted

Adapting the Operator Exclusion Clauses: Idea

Reminder: operator exclusion clauses $\neg o_j^i \vee \neg o_k^i$
for all $1 \leq i \leq T, 1 \leq j < k \leq n$

- **Ideally:** replace with clauses that express “for all states s , the operators selected at time i are **interference-free** in s ”
- **but:** testing if a given set of operators interferes in any state is itself an NP-complete problem
- ~~> use something less heavy: a **sufficient condition** for interference-freeness that can be expressed at the level of **pairs** of operators

Conflicting Operators

- Intuitively, two operators **conflict** if
 - one can disable the precondition of the other,
 - one can override an effect of the other, or
 - one can enable or disable an effect condition of the other.
- If no two operators in a set O' conflict, then O' is interference-free in all states.
- This is still difficult to test, so we restrict attention to the **STRIPS** case in the following.

Definition (Conflicting STRIPS Operator)

Operators o and o' of a STRIPS task Π **conflict** if

- o deletes a precondition of o' or vice versa, or
- o deletes an add effect of o' or vice versa.

Adapting the Operator Exclusion Clauses: Solution

Reminder: operator exclusion clauses $\neg o_j^i \vee \neg o_k^i$
for all $1 \leq i \leq T, 1 \leq j < k \leq n$

Solution:

Parallel SAT Formula: Operator Exclusion Clauses

operator exclusion clauses:

- $\neg o_j^i \vee \neg o_k^i$ for all $1 \leq i \leq T, 1 \leq j < k \leq n$
such that o_j and o_k conflict

Adapting the Frame Clauses: Idea

Reminder: frame clauses

$$(o^i \wedge v^{i-1} \wedge \neg v^i) \rightarrow \delta^{i-1} \quad \text{for all } 1 \leq i \leq T, o \in O, v \in V$$

$$(o^i \wedge \neg v^{i-1} \wedge v^i) \rightarrow \alpha^{i-1} \quad \text{for all } 1 \leq i \leq T, o \in O, v \in V$$

What is the problem?

- These clauses express that if o is applied at time i and the value of v changes, then **o caused the change**.
- This is no longer true if we want to be able to apply two operators concurrently.

↝ Instead, say “If the value of v changes, then **some operator** must have caused the change.”

Adapting the Frame Clauses: Solution

Reminder: frame clauses

$$(o^i \wedge v^{i-1} \wedge \neg v^i) \rightarrow \delta^{i-1} \quad \text{for all } 1 \leq i \leq T, o \in O, v \in V$$
$$(o^i \wedge \neg v^{i-1} \wedge v^i) \rightarrow \alpha^{i-1} \quad \text{for all } 1 \leq i \leq T, o \in O, v \in V$$

Solution:

Parallel SAT Formula: Frame Clauses

positive and negative frame clauses:

- $(v^{i-1} \wedge \neg v^i) \rightarrow ((o_1^i \wedge \delta_{o_1}^{i-1}) \vee \dots \vee (o_n^i \wedge \delta_{o_n}^{i-1}))$
for all $1 \leq i \leq T, v \in V$
- $(\neg v^{i-1} \wedge v^i) \rightarrow ((o_1^i \wedge \alpha_{o_1}^{i-1}) \vee \dots \vee (o_n^i \wedge \alpha_{o_n}^{i-1}))$
for all $1 \leq i \leq T, v \in V$

where $\alpha_o = \text{effcond}(v, \text{eff}(o))$, $\delta_o = \text{effcond}(\neg v, \text{eff}(o))$,
 $O = \{o_1, \dots, o_n\}$.

For STRIPS, these are in clause form.

Summary

Summary

- As a rule of thumb, SAT solvers generally perform better on formulas with fewer variables.
- **Parallel encodings** reduce the number of variables by shortening the horizon needed to solve a planning task.
- Parallel encodings replace the constraint that operators are not applied concurrently by the constraint that **conflicting** operators are not applied concurrently.
- To make parallelism possible, the **frame clauses** also need to be adapted.