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Regression for General Planning Tasks

With disjunctions and conditional effects, things become more
tricky. How to regress a ∨ (b ∧ c) with respect to 〈q, d B b〉?
In this chapter, we show how to regress general sets of states
through general operators.

We extensively use the idea of representing sets of states
as formulas.
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Regressing State Variables
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Regressing State Variables: Motivation

Key question for general regression:

Assume we are applying an operator with effect e.

What must be true in the predecessor state for propositional
state variable v to be true in the successor state?

If we can answer this question, a general definition of regression
is only a small additional step.
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Regressing State Variables: Key Idea

Assume we are in state s and apply effect e
to obtain successor state s ′.

Propositional state variable v is true in s ′ iff

effect e makes it true, or

it remains true, i.e., it is true in s and not made false by e.
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Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task,
and let v be a propositional state variable.

The regression of v through e, written regr(v , e),
is defined as the following logical formula:

regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).

Questions:

Does this capture add-after-delete semantics correctly?

How can we define regression for FDR tasks?
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Regressing State Variables: Example

Example

Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d .

v regr(v , e)

a b ∨ (a ∧ ¬c)
b > ∨ (b ∧ ¬⊥) ≡ >
c ⊥ ∨ (c ∧ ¬⊥) ≡ c
d ⊥ ∨ (d ∧ ¬>) ≡ ⊥

Reminder: regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e))
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Regressing State Variables: Correctness (1)

Lemma (Correctness of regr(v , e))

Let s be a state, e be an effect and v be a state variable
of a propositional planning task.

Then s |= regr(v , e) iff sJeK |= v.
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Regressing State Variables: Correctness (2)

Proof.

(⇒): We know s |= regr(v , e), and hence
s |= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).

Do a case analysis on the two disjuncts.

Case 1: s |= effcond(v , e).
Then sJeK |= v by the first case in the definition of sJeK (Ch. A4).

Case 2: s |= (v ∧ ¬effcond(¬v , e)).
Then s |= v and s 6|= effcond(¬v , e).
We may additionally assume s 6|= effcond(v , e)
because otherwise we can apply Case 1 of this proof.
Then sJeK |= v by the third case in the definition of sJeK. . . .
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Regressing State Variables: Correctness (3)

Proof (continued).

(⇐): Proof by contraposition.
We show that if regr(v , e) is false in s, then v is false in sJeK.

By prerequisite, s 6|= effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e)).

Hence s |= ¬effcond(v , e) ∧ (¬v ∨ effcond(¬v , e)).

From the first conjunct, we get s |= ¬effcond(v , e)
and hence s 6|= effcond(v , e).

From the second conjunct, we get s |= ¬v ∨ effcond(¬v , e).

Case 1: s |= ¬v . Then v is false before applying e
and remains false, so sJeK 6|= v .

Case 2: s |= effcond(¬v , e). Then v is deleted by e
and not simultaneously added, so sJeK 6|= v .
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Regressing Formulas Through Effects
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Regressing Formulas Through Effects: Idea

We can now generalize regression from state variables
to general formulas over state variables.

The basic idea is to replace every occurrence of every state
variable v by regr(v , e) as defined in the previous section.

The following definition makes this more formal.
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Regressing Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect,
and let ϕ be a formula over propositional state variables.

The regression of ϕ through e, written regr(ϕ, e),
is defined as the following logical formula:

regr(>, e) = >
regr(⊥, e) = ⊥
regr(v , e) = effcond(v , e) ∨ (v ∧ ¬effcond(¬v , e))

regr(¬ψ, e) = ¬regr(ψ, e)

regr(ψ ∨ χ, e) = regr(ψ, e) ∨ regr(χ, e)

regr(ψ ∧ χ, e) = regr(ψ, e) ∧ regr(χ, e).

Question: definition for FDR tasks?
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Regressing Formulas Through Effects: Example

Example

Let e = (b B a) ∧ (c B ¬a) ∧ b ∧ ¬d .

Recall:

regr(a, e) ≡ b ∨ (a ∧ ¬c)

regr(b, e) ≡ >
regr(c, e) ≡ c

regr(d , e) ≡ ⊥
We get:

regr((a ∨ d) ∧ (c ∨ d), e) ≡ ((b ∨ (a ∧ ¬c)) ∨ ⊥) ∧ (c ∨ ⊥)

≡ (b ∨ (a ∧ ¬c)) ∧ c

≡ b ∧ c
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Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of regr(ϕ, e))

Let ϕ be a logical formula, e an effect and s a state
of a propositional planning task.

Then s |= regr(ϕ, e) iff sJeK |= ϕ.
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Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on ϕ.

Induction hypothesis: s |= regr(ψ, e) iff sJeK |= ψ
for all proper subformulas ψ of ϕ.

Base case ϕ = >:

We have regr(>, e) = >, and s |= > iff sJeK |= > is correct.

Base case ϕ = ⊥:

We have regr(⊥, e) = ⊥, and s |= ⊥ iff sJeK |= ⊥ is correct.

Base case ϕ = v :

We have s |= regr(v , e) iff sJeK |= v from the previous lemma. . . .
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Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case ϕ = ¬ψ:

s |= regr(¬ψ, e) iff s |= ¬regr(ψ, e)
iff s 6|= regr(ψ, e)
iff sJeK 6|= ψ
iff sJeK |= ¬ψ

Inductive case ϕ = ψ ∨ χ:

s |= regr(ψ ∨ χ, e) iff s |= regr(ψ, e) ∨ regr(χ, e)
iff s |= regr(ψ, e) or s |= regr(χ, e)
iff sJeK |= ψ or sJeK |= χ
iff sJeK |= ψ ∨ χ

Inductive case ϕ = ψ ∧ χ:

Like previous case, replacing “∨” by “∧”
and replacing “or” by “and”.
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Regressing Formulas Through
Operators
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Regressing Formulas Through Operators: Idea

We can now regress arbitrary formulas
through arbitrary effects.

The last missing piece is a definition of regression through
operators, describing exactly in which states s applying a
given operator o leads to a state satisfying a given formula ϕ.

There are two requirements:

The operator o must be applicable in the state s.
The resulting state sJoK must satisfy ϕ.
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Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator,
and let ϕ be a formula over state variables.

The regression of ϕ through o, written regr(ϕ, o),
is defined as the following logical formula:

regr(ϕ, o) = pre(o) ∧ regr(ϕ, eff(o)).

Question: definition for FDR tasks?
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Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of regr(ϕ, o))

Let ϕ be a logical formula, o an operator and s a state
of a propositional planning task.

Then s |= regr(ϕ, o) iff o is applicable in s and sJoK |= ϕ.
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Regressing Formulas Through Operators: Correctness (2)

Reminder: regr(ϕ, o) = pre(o) ∧ regr(ϕ, eff(o))

Proof.

Case 1: s |= pre(o).

Then o is applicable in s and the statement we must prove
simplifies to: s |= regr(ϕ, e) iff sJeK |= ϕ, where e = eff(o).
This was proved in the previous lemma.

Case 2: s 6|= pre(o).

Then s 6|= regr(ϕ, o) and o is not applicable in s.
Hence both statements are false and therefore equivalent.
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Summary

Regressing a propositional state variable
through an (arbitrary) operator must consider two cases:

state variables made true (by add effects)
state variables remaining true (by absence of delete effects)

Regression of propositional state variables can be generalized
to arbitrary formulas ϕ by replacing each occurrence
of a state variable in ϕ by its regression.

Regressing a formula ϕ through an operator involves
regressing ϕ through the effect and enforcing the precondition.
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