

Planning and Optimization

B3. General Regression

Malte Helmert and Gabriele Röger

Universität Basel

Planning and Optimization

— B3. General Regression

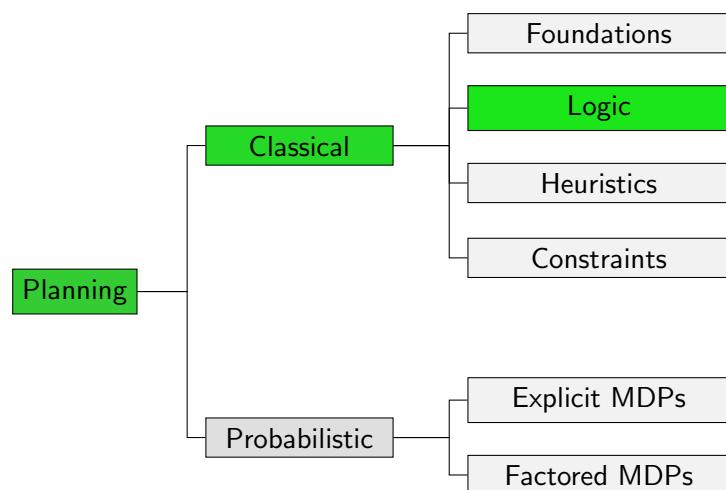
B3.1 Regressing State Variables

B3.2 Regressing Formulas Through Effects

B3.3 Regressing Formulas Through Operators

B3.4 Summary

Content of this Course



Regression for General Planning Tasks

- ▶ With disjunctions and conditional effects, things become more tricky. How to regress $a \vee (b \wedge c)$ with respect to $\langle q, d \triangleright b \rangle$?
- ▶ In this chapter, we show how to regress **general sets of states** through **general operators**.
- ▶ We extensively use the idea of representing sets of states as formulas.

B3.1 Regressing State Variables

Regressing State Variables: Motivation

Key question for general regression:

- ▶ Assume we are applying an operator with effect e .
- ▶ What must be true in the **predecessor state** for propositional state variable v to be true in the **successor state**?

If we can answer this question, a general definition of regression is only a small additional step.

Regressing State Variables: Key Idea

Assume we are in state s and apply effect e to obtain successor state s' .

Propositional state variable v is true in s' iff

- ▶ effect e **makes it true**, or
- ▶ it **remains true**, i.e., it is true in s and not made false by e .

Regressing a State Variable Through an Effect

Definition (Regressing a State Variable Through an Effect)

Let e be an effect of a propositional planning task, and let v be a propositional state variable.

The **regression of v through e** , written $regr(v, e)$, is defined as the following logical formula:

$$regr(v, e) = effcond(v, e) \vee (v \wedge \neg effcond(\neg v, e)).$$

Questions:

- ▶ Does this capture add-after-delete semantics correctly?
- ▶ How can we define regression for FDR tasks?

Regressing State Variables: Example

Example

Let $e = (b \triangleright a) \wedge (c \triangleright \neg a) \wedge b \wedge \neg d$.

v	$\text{regr}(v, e)$
a	$b \vee (a \wedge \neg c)$
b	$\top \vee (b \wedge \neg \perp) \equiv \top$
c	$\perp \vee (c \wedge \neg \perp) \equiv c$
d	$\perp \vee (d \wedge \neg \top) \equiv \perp$

Reminder: $\text{regr}(v, e) = \text{effcond}(v, e) \vee (v \wedge \neg \text{effcond}(\neg v, e))$

Regressing State Variables: Correctness (1)

Lemma (Correctness of $\text{regr}(v, e)$)

Let s be a state, e be an effect and v be a state variable of a propositional planning task.

Then $s \models \text{regr}(v, e)$ iff $s[e] \models v$.

Regressing State Variables: Correctness (2)

Proof.

(\Rightarrow): We know $s \models \text{regr}(v, e)$, and hence $s \models \text{effcond}(v, e) \vee (v \wedge \neg \text{effcond}(\neg v, e))$.

Do a case analysis on the two disjuncts.

Case 1: $s \models \text{effcond}(v, e)$.

Then $s[e] \models v$ by the first case in the definition of $s[e]$ (Ch. A4).

Case 2: $s \models (v \wedge \neg \text{effcond}(\neg v, e))$.

Then $s \models v$ and $s \not\models \text{effcond}(\neg v, e)$.

We may additionally assume $s \not\models \text{effcond}(v, e)$ because otherwise we can apply Case 1 of this proof.

Then $s[e] \models v$ by the third case in the definition of $s[e]$. . .

Regressing State Variables: Correctness (3)

Proof (continued).

(\Leftarrow): Proof by contraposition.

We show that if $\text{regr}(v, e)$ is false in s , then v is false in $s[e]$.

- ▶ By prerequisite, $s \not\models \text{effcond}(v, e) \vee (v \wedge \neg \text{effcond}(\neg v, e))$.
- ▶ Hence $s \models \neg \text{effcond}(v, e) \wedge (\neg v \vee \text{effcond}(\neg v, e))$.
- ▶ From the first conjunct, we get $s \models \neg \text{effcond}(v, e)$ and hence $s \not\models \text{effcond}(v, e)$.
- ▶ From the second conjunct, we get $s \models \neg v \vee \text{effcond}(\neg v, e)$.
- ▶ **Case 1:** $s \models \neg v$. Then v is false before applying e and remains false, so $s[e] \not\models v$.
- ▶ **Case 2:** $s \models \text{effcond}(\neg v, e)$. Then v is deleted by e and not simultaneously added, so $s[e] \not\models v$.

B3.2 Regressing Formulas Through Effects

Regressing Formulas Through Effects: Idea

- ▶ We can now generalize regression from state variables to general formulas over state variables.
- ▶ The basic idea is to replace **every occurrence** of every state variable v by $regr(v, e)$ as defined in the previous section.
- ▶ The following definition makes this more formal.

Regressing Formulas Through Effects: Definition

Definition (Regressing a Formula Through an Effect)

In a propositional planning task, let e be an effect, and let φ be a formula over propositional state variables.

The **regression of φ through e** , written $regr(\varphi, e)$, is defined as the following logical formula:

$$\begin{aligned} regr(\top, e) &= \top \\ regr(\perp, e) &= \perp \\ regr(v, e) &= effcond(v, e) \vee (v \wedge \neg effcond(\neg v, e)) \\ regr(\neg \psi, e) &= \neg regr(\psi, e) \\ regr(\psi \vee \chi, e) &= regr(\psi, e) \vee regr(\chi, e) \\ regr(\psi \wedge \chi, e) &= regr(\psi, e) \wedge regr(\chi, e). \end{aligned}$$

Question: definition for FDR tasks?

Regressing Formulas Through Effects: Example

Example

Let $e = (b \triangleright a) \wedge (c \triangleright \neg a) \wedge b \wedge \neg d$.

Recall:

- ▶ $regr(a, e) \equiv b \vee (a \wedge \neg c)$
- ▶ $regr(b, e) \equiv \top$
- ▶ $regr(c, e) \equiv c$
- ▶ $regr(d, e) \equiv \perp$

We get:

$$\begin{aligned} regr((a \vee d) \wedge (c \vee d), e) &\equiv ((b \vee (a \wedge \neg c)) \vee \perp) \wedge (c \vee \perp) \\ &\equiv (b \vee (a \wedge \neg c)) \wedge c \\ &\equiv b \wedge c \end{aligned}$$

Regressing Formulas Through Effects: Correctness (1)

Lemma (Correctness of $regr(\varphi, e)$)

Let φ be a logical formula, e an effect and s a state of a propositional planning task.

Then $s \models regr(\varphi, e)$ iff $s[e] \models \varphi$.

Regressing Formulas Through Effects: Correctness (3)

Proof (continued).

Inductive case $\varphi = \neg\psi$:

$$\begin{aligned} s \models regr(\neg\psi, e) &\text{ iff } s \models \neg regr(\psi, e) \\ &\text{ iff } s \not\models regr(\psi, e) \\ &\text{ iff } s[e] \not\models \psi \\ &\text{ iff } s[e] \models \neg\psi \end{aligned}$$

Inductive case $\varphi = \psi \vee \chi$:

$$\begin{aligned} s \models regr(\psi \vee \chi, e) &\text{ iff } s \models regr(\psi, e) \vee regr(\chi, e) \\ &\text{ iff } s \models regr(\psi, e) \text{ or } s \models regr(\chi, e) \\ &\text{ iff } s[e] \models \psi \text{ or } s[e] \models \chi \\ &\text{ iff } s[e] \models \psi \vee \chi \end{aligned}$$

Inductive case $\varphi = \psi \wedge \chi$:

Like previous case, replacing “ \vee ” by “ \wedge ”
and replacing “or” by “and”. □

Regressing Formulas Through Effects: Correctness (2)

Proof.

The proof is by structural induction on φ .

Induction hypothesis: $s \models regr(\psi, e)$ iff $s[e] \models \psi$
for all proper subformulas ψ of φ .

Base case $\varphi = \top$:

We have $regr(\top, e) = \top$, and $s \models \top$ iff $s[e] \models \top$ is correct.

Base case $\varphi = \perp$:

We have $regr(\perp, e) = \perp$, and $s \models \perp$ iff $s[e] \models \perp$ is correct.

Base case $\varphi = v$:

We have $s \models regr(v, e)$ iff $s[e] \models v$ from the previous lemma. ...

B3.3 Regressing Formulas Through Operators

Regressing Formulas Through Operators: Idea

- ▶ We can now regress arbitrary formulas through arbitrary effects.
- ▶ The last missing piece is a definition of regression through **operators**, describing exactly in which states s applying a given operator o leads to a state satisfying a given formula φ .
- ▶ There are two requirements:
 - ▶ The operator o must be **applicable** in the state s .
 - ▶ The **resulting state** $s[o]$ must **satisfy** φ .

Regressing Formulas Through Operators: Correctness (1)

Theorem (Correctness of $\text{regr}(\varphi, o)$)

Let φ be a logical formula, o an operator and s a state of a propositional planning task.

Then $s \models \text{regr}(\varphi, o)$ iff o is applicable in s and $s[o] \models \varphi$.

Regressing Formulas Through Operators: Definition

Definition (Regressing a Formula Through an Operator)

In a propositional planning task, let o be an operator, and let φ be a formula over state variables.

The **regression of φ through o** , written $\text{regr}(\varphi, o)$, is defined as the following logical formula:

$$\text{regr}(\varphi, o) = \text{pre}(o) \wedge \text{regr}(\varphi, \text{eff}(o)).$$

Question: definition for FDR tasks?

Regressing Formulas Through Operators: Correctness (2)

Reminder: $\text{regr}(\varphi, o) = \text{pre}(o) \wedge \text{regr}(\varphi, \text{eff}(o))$

Proof.

Case 1: $s \models \text{pre}(o)$.

Then o is applicable in s and the statement we must prove simplifies to: $s \models \text{regr}(\varphi, e)$ iff $s[e] \models \varphi$, where $e = \text{eff}(o)$. This was proved in the previous lemma.

Case 2: $s \not\models \text{pre}(o)$.

Then $s \not\models \text{regr}(\varphi, o)$ and o is not applicable in s .

Hence both statements are false and therefore equivalent. □

B3.4 Summary

Summary

- ▶ Regressing a **propositional state variable** through an (arbitrary) operator must consider two cases:
 - ▶ state variables **made true** (by add effects)
 - ▶ state variables **remaining true** (by absence of delete effects)
- ▶ Regression of propositional state variables can be generalized to arbitrary formulas φ by replacing each occurrence of a state variable in φ by its regression.
- ▶ **Regressing a formula φ through an operator** involves regressing φ through the effect and enforcing the precondition.