
Planning and Optimization
B2. Progression and Regression Search

Malte Helmert and Gabriele Röger

Universität Basel

Introduction Progression Regression Regression for STRIPS Tasks Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

Introduction Progression Regression Regression for STRIPS Tasks Summary

Introduction

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Direction

Search direction

one dimension for classifying search algorithms

forward search from initial state to goal based on progression

backward search from goal to initial state based on regression

bidirectional search

In this chapter we look into progression and regression planning.

Introduction Progression Regression Regression for STRIPS Tasks Summary

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

init() returns initial state

is goal(s) tests if s is a goal state

succ(s) returns all pairs 〈a, s ′〉 with s
a−→ s ′

cost(a) returns cost of action a

h(s) returns heuristic value for state s

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression

Introduction Progression Regression Regression for STRIPS Tasks Summary

Planning by Forward Search: Progression

Progression: Computing the successor state sJoK of a state s
with respect to an operator o.

Progression planners find solutions by forward search:

start from initial state

iteratively pick a previously generated state and progress it
through an operator, generating a new state

solution found when a goal state generated

pro: very easy and efficient to implement

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Space for Progression

Search Space for Progression

search space for progression in a planning task Π = 〈V , I ,O, γ〉
(search states are world states s of Π;
actions of search space are operators o ∈ O)

init() returns I

is goal(s) tests if s |= γ

succ(s) returns all pairs 〈o, sJoK〉

where o ∈ O and o is applicable in s

cost(o) returns cost(o) as defined in Π

h(s) estimates cost from s to γ (Parts C–F)

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Progression Planning Example

Example of a progression search

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression

Introduction Progression Regression Regression for STRIPS Tasks Summary

Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction
is not symmetric:

forward search starts from a single initial state;
backward search starts from a set of goal states

when applying an operator o in a state s in forward direction,
there is a unique successor state s ′;
if we just applied operator o and ended up in state s ′,
there can be several possible predecessor states s

 in most natural representation for backward search in planning,

each search state corresponds to a set of world states

Introduction Progression Regression Regression for STRIPS Tasks Summary

Planning by Backward Search: Regression

Regression: Computing the possible predecessor states regr(S ′, o)
of a set of states S ′ (“subgoal”) given the last operator o
that was applied.

 formal definition in next chapter

Regression planners find solutions by backward search:

start from set of goal states

iteratively pick a previously generated subgoal (state set) and
regress it through an operator, generating a new subgoal

solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously
con: basic operations complicated and expensive

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Space Representation in Regression Planners

identify state sets with logical formulas (again):

each search state corresponds to a set of world states
(“subgoal”)

each search state is represented by a logical formula:
ϕ represents {s ∈ S | s |= ϕ}
many basic search operations like detecting duplicates
are NP-complete or coNP-complete

Introduction Progression Regression Regression for STRIPS Tasks Summary

Search Space for Regression

Search Space for Regression

search space for regression in a planning task Π = 〈V , I ,O, γ〉
(search states are formulas ϕ describing sets of world states;
actions of search space are operators o ∈ O)

init() returns γ

is goal(ϕ) tests if I |= ϕ

succ(ϕ) returns all pairs 〈o, regr(ϕ, o)〉

where o ∈ O and regr(ϕ, o) is defined

cost(o) returns cost(o) as defined in Π

h(ϕ) estimates cost from I to ϕ (Parts C–F)

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γϕ1ϕ1 = regr(γ,−→) ϕ2

ϕ2 = regr(ϕ1,−→)

ϕ3

ϕ3 = regr(ϕ2,−→), I |= ϕ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γ

ϕ1ϕ1 = regr(γ,−→) ϕ2

ϕ2 = regr(ϕ1,−→)

ϕ3

ϕ3 = regr(ϕ2,−→), I |= ϕ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γϕ1ϕ1 = regr(γ,−→)

ϕ2

ϕ2 = regr(ϕ1,−→)

ϕ3

ϕ3 = regr(ϕ2,−→), I |= ϕ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γϕ1ϕ1 = regr(γ,−→) ϕ2

ϕ2 = regr(ϕ1,−→)

ϕ3

ϕ3 = regr(ϕ2,−→), I |= ϕ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression Planning Example (Depth-first Search)

γϕ1ϕ1 = regr(γ,−→) ϕ2

ϕ2 = regr(ϕ1,−→)

ϕ3

ϕ3 = regr(ϕ2,−→), I |= ϕ3

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression for STRIPS Tasks

Introduction Progression Regression Regression for STRIPS Tasks Summary

Regression for STRIPS Planning Tasks

Regression for STRIPS planning tasks is much simpler
than the general case:

Consider subgoal ϕ that is conjunction of atoms a1 ∧ · · · ∧ an
(e.g., the original goal γ of the planning task).

First step: Choose an operator o that deletes no ai .

Second step: Remove any atoms added by o from ϕ.

Third step: Conjoin pre(o) to ϕ.

 Outcome of this is regression of ϕ w.r.t. o.
It is again a conjunction of atoms.

optimization: only consider operators adding at least one ai

Introduction Progression Regression Regression for STRIPS Tasks Summary

STRIPS Regression

Definition (STRIPS Regression)

Let ϕ = ϕ1 ∧ · · · ∧ ϕn be a conjunction of atoms, and
let o be a STRIPS operator which adds the atoms a1, . . . , ak
and deletes the atoms d1, . . . , dl .

The STRIPS regression of ϕ with respect to o is

sregr(ϕ, o) :=

{
⊥ if ϕi = dj for some i , j

pre(o) ∧
∧

({ϕ1, . . . , ϕn} \ {a1, . . . , ak}) else

Note: sregr(ϕ, o) is again a conjunction of atoms, or ⊥.

Introduction Progression Regression Regression for STRIPS Tasks Summary

Does this Capture the Idea of Regression?

For our definition to capture the concept of regression,
it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms ϕ,
all states s and all STRIPS operators o,

s |= sregr(ϕ, o) iff sJoK |= ϕ.

This is indeed true. We do not prove it now because we prove
this property for general regression (not just STRIPS) later.

Introduction Progression Regression Regression for STRIPS Tasks Summary

Summary

Introduction Progression Regression Regression for STRIPS Tasks Summary

Summary

Progression search proceeds forward from the initial state.

In progression search, the search space is identical
to the state space of the planning task.

Regression search proceeds backwards from the goal.

Each search state corresponds to a set of world states,
for example represented by a formula.

Regression is simple for STRIPS operators.

The theory for general regression is more complex.
This is the topic of the following chapters.

	Introduction
	

	Progression
	

	Regression
	

	Regression for STRIPS Tasks
	

	Summary
	

