

Planning and Optimization

B2. Progression and Regression Search

Malte Helmert and Gabriele Röger

Universität Basel

Planning and Optimization

— B2. Progression and Regression Search

B2.1 Introduction

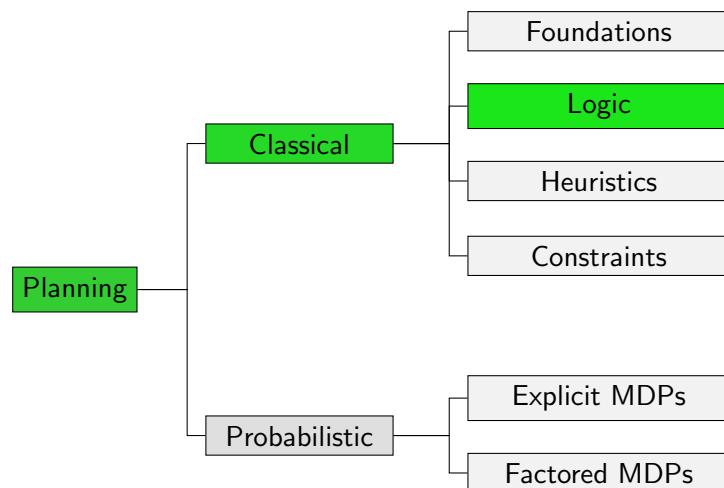
B2.2 Progression

B2.3 Regression

B2.4 Regression for STRIPS Tasks

B2.5 Summary

Content of this Course



B2.1 Introduction

Search Direction

Search direction

- ▶ one dimension for classifying search algorithms
- ▶ **forward** search from initial state to goal based on **progression**
- ▶ **backward** search from goal to initial state based on **regression**
- ▶ **bidirectional** search

In this chapter we look into progression and regression planning.

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

- ▶ **init()** \rightsquigarrow returns initial state
- ▶ **is_goal(s)** \rightsquigarrow tests if s is a goal state
- ▶ **succ(s)** \rightsquigarrow returns all pairs $\langle a, s' \rangle$ with $s \xrightarrow{a} s'$
- ▶ **cost(a)** \rightsquigarrow returns cost of action a
- ▶ **h(s)** \rightsquigarrow returns heuristic value for state s

B2.2 Progression

Planning by Forward Search: Progression

Progression: Computing the successor state $s[\![o]\!]$ of a state s with respect to an operator o .

Progression planners find solutions by forward search:

- ▶ start from initial state
- ▶ iteratively pick a previously generated state and **progress it** through an operator, generating a new state
- ▶ solution found when a goal state generated

pro: very easy and efficient to implement

Search Space for Progression

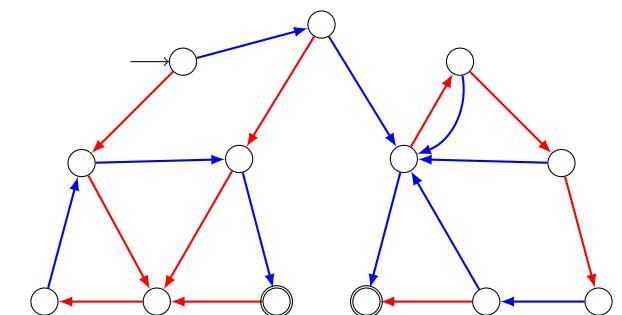
Search Space for Progression

search space for progression in a planning task $\Pi = \langle V, I, O, \gamma \rangle$
 (search states are world states s of Π ;
 actions of search space are operators $o \in O$)

- ▶ **init()** \rightsquigarrow returns I
- ▶ **is_goal(s)** \rightsquigarrow tests if $s \models \gamma$
- ▶ **succ(s)** \rightsquigarrow returns all pairs $\langle o, s[o] \rangle$
 where $o \in O$ and o is applicable in s
- ▶ **cost(o)** \rightsquigarrow returns $cost(o)$ as defined in Π
- ▶ **h(s)** \rightsquigarrow estimates cost from s to γ (\rightsquigarrow Parts C–F)

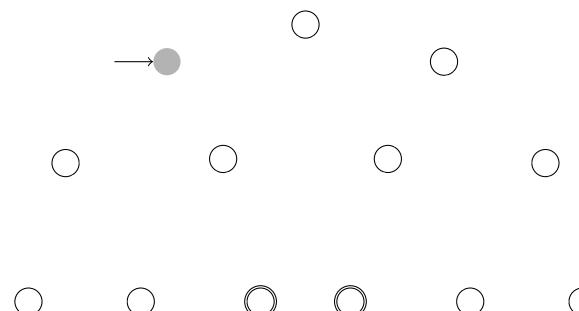
Progression Planning Example

Example of a progression search



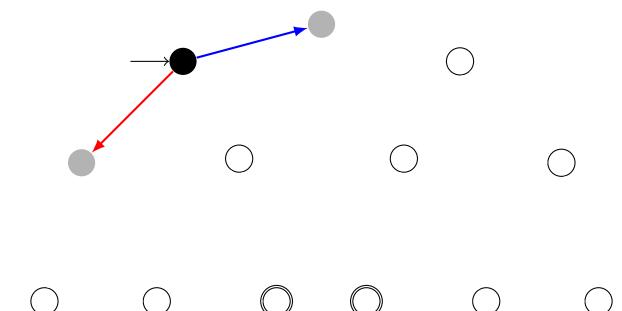
Progression Planning Example

Example of a progression search



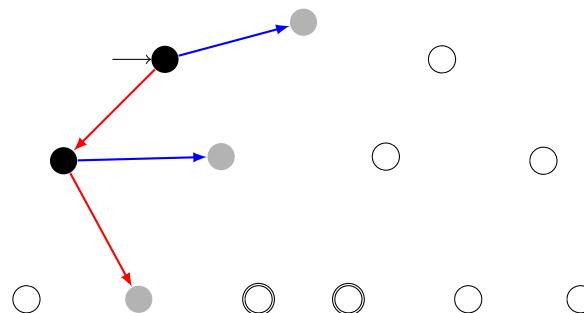
Progression Planning Example

Example of a progression search



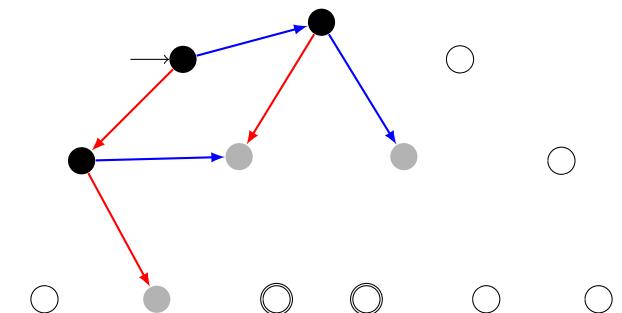
Progression Planning Example

Example of a progression search



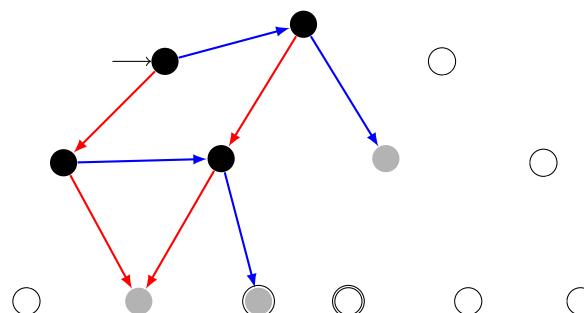
Progression Planning Example

Example of a progression search



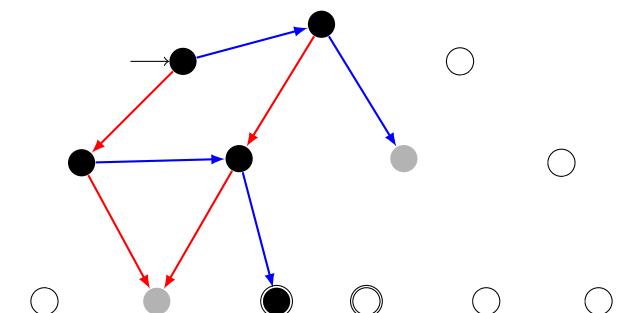
Progression Planning Example

Example of a progression search



Progression Planning Example

Example of a progression search



B2.3 Regression

Forward Search vs. Backward Search

Searching planning tasks in forward vs. backward direction is **not symmetric**:

- ▶ forward search starts from a **single** initial state; backward search starts from a **set** of goal states
- ▶ when applying an operator o in a state s in forward direction, there is a **unique successor state s'** ; if we just applied operator o and ended up in state s' , there can be **several possible predecessor states s**

~~> in most natural representation for backward search in planning, each search state corresponds to a **set of world states**

Planning by Backward Search: Regression

Regression: Computing the possible predecessor states $regr(S', o)$ of a set of states S' ("subgoal") given the last operator o that was applied.

~~> formal definition in next chapter

Regression planners find solutions by backward search:

- ▶ start from set of goal states
- ▶ iteratively pick a previously generated subgoal (state set) and **regress it** through an operator, generating a new subgoal
- ▶ solution found when a generated subgoal includes initial state

pro: can handle many states simultaneously

con: basic operations complicated and expensive

Search Space Representation in Regression Planners

identify state sets with **logical formulas** (again):

- ▶ each **search state** corresponds to a **set of world states** ("subgoal")
- ▶ each search state is represented by a **logical formula**: φ represents $\{s \in S \mid s \models \varphi\}$
- ▶ many basic search operations like detecting duplicates are NP-complete or coNP-complete

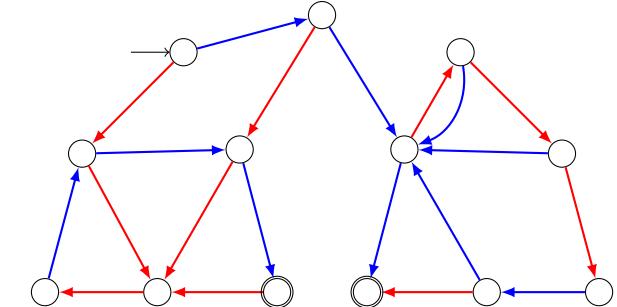
Search Space for Regression

Search Space for Regression

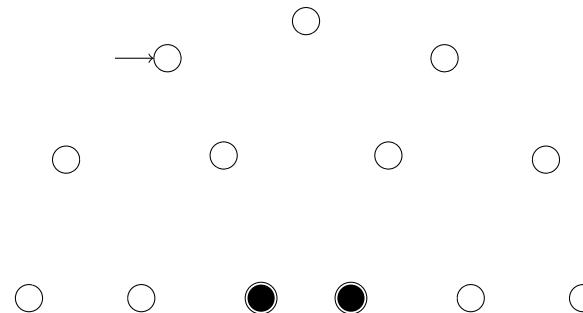
search space for regression in a planning task $\Pi = \langle V, I, O, \gamma \rangle$
 (search states are formulas φ describing sets of world states;
 actions of search space are operators $o \in O$)

- ▶ **init()** \rightsquigarrow returns γ
- ▶ **is_goal(φ)** \rightsquigarrow tests if $I \models \varphi$
- ▶ **succ(φ)** \rightsquigarrow returns all pairs $\langle o, \text{regr}(\varphi, o) \rangle$
 where $o \in O$ and $\text{regr}(\varphi, o)$ is defined
- ▶ **cost(o)** \rightsquigarrow returns $\text{cost}(o)$ as defined in Π
- ▶ **h(φ)** \rightsquigarrow estimates cost from I to φ (\rightsquigarrow Parts C–F)

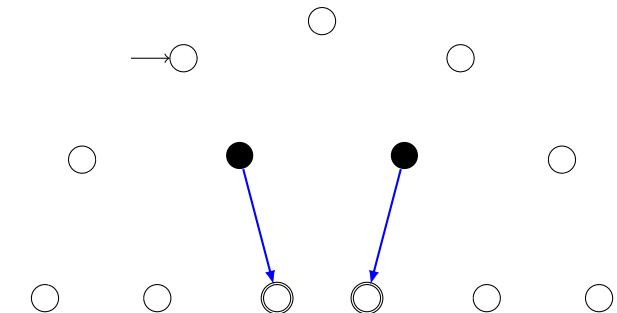
Regression Planning Example (Depth-first Search)



Regression Planning Example (Depth-first Search)

 γ 

Regression Planning Example (Depth-first Search)

 $\varphi_1 = \text{regr}(\gamma, \rightarrow)$ $\varphi_1 \rightarrow \gamma$ 

STRIPS Regression

Definition (STRIPS Regression)

Let $\varphi = \varphi_1 \wedge \dots \wedge \varphi_n$ be a conjunction of atoms, and let o be a STRIPS operator which adds the atoms a_1, \dots, a_k and deletes the atoms d_1, \dots, d_l .

The **STRIPS regression** of φ with respect to o is

$$sreg(\varphi, o) := \begin{cases} \perp & \text{if } \varphi_i = d_j \text{ for some } i, j \\ pre(o) \wedge \bigwedge (\{\varphi_1, \dots, \varphi_n\} \setminus \{a_1, \dots, a_k\}) & \text{else} \end{cases}$$

Note: $sreg(\varphi, o)$ is again a conjunction of atoms, or \perp .

Does this Capture the Idea of Regression?

For our definition to capture the concept of **regression**, it must have the following property:

Regression Property

For all sets of states described by a conjunction of atoms φ , all states s and all STRIPS operators o ,

$$s \models sreg(\varphi, o) \quad \text{iff} \quad s \llbracket o \rrbracket \models \varphi.$$

This is indeed true. We do not prove it now because we prove this property for general regression (not just STRIPS) later.

B2.5 Summary

Summary

- ▶ **Progression search** proceeds forward from the initial state.
- ▶ In progression search, the search space is identical to the state space of the planning task.
- ▶ **Regression search** proceeds backwards from the goal.
- ▶ Each search state corresponds to a **set of world states**, for example represented by a **formula**.
- ▶ Regression is simple for **STRIPS** operators.
- ▶ The theory for **general regression** is more complex. This is the topic of the following chapters.