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Classical Planning Algorithms

Let’s start solving planning tasks!

This Chapter

very high-level overview of classical planning algorithms

I bird’s eye view: no details, just some very brief ideas
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The Big Three

Of the many planning approaches, three techniques stand out:

I explicit search  Chapters B2–B4, Parts C–F

I SAT planning  Chapters B5–B6

I symbolic search  Chapters B7–B8

also: many algorithm portfolios
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Satisficing or Optimal Planning?

must carefully distinguish:

I satisficing planning: any plan is OK (cheaper ones preferred)

I optimal planning: plans must have minimum cost

solved by similar techniques, but:

I details very different

I almost no overlap between best techniques for satisficing
planning and best techniques for optimal planning

I many tasks that are trivial for satisficing planners
are impossibly hard for optimal planners
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Explicit Search

You know this one already! (Hopefully.)
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Reminder: State-Space Search

Need to Catch Up?
I We assume prior knowledge of basic search algorithms:

I uninformed vs. informed (heuristic)
I satisficing vs. optimal
I heuristics and their properties
I specific algorithms: e.g., breadth-first search,

greedy best-first search, A∗

I If you are not familiar with them, we recommend Ch. 5–19
of the Foundations of Artificial Intelligence course:
https://dmi.unibas.ch/en/academics/

computer-science/courses-in-spring-semester-2020/

lecture-foundations-of-artificial-intelligence/
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Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms
I init()  returns initial state

I is goal(s)  tests if s is a goal state

I succ(s)  returns all pairs 〈a, s ′〉 with s
a−→ s ′

I cost(a)  returns cost of action a

I h(s)  returns heuristic value for state s

 Foundations of Artificial Intelligence course, Chapters 6 and 13
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State Space vs. Search Space

I Planning tasks induce transition systems (a.k.a. state spaces)
with an initial state, labeled transitions and goal states.

I State-space search searches state spaces with an initial state,
a successor function and goal states.

 looks like an obvious correspondence

I However, in planning as search, the state space being searched
can be different from the state space of the planning task.

I When we need to make a distinction, we speak of
I the state space of the planning task

whose states are called world states vs.
I the search space of the search algorithm

whose states are called search states.
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Design Choice: Search Direction

How to apply explicit search to planning?  many design choices!

Design Choice: Search Direction
I progression: forward from initial state to goal

I regression: backward from goal states to initial state

I bidirectional search

 Chapters B2–B4
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Design Choice: Search Algorithm

How to apply explicit search to planning?  many design choices!

Design Choice: Search Algorithm
I uninformed search:

depth-first, breadth-first, iterative depth-first, . . .

I heuristic search (systematic):
greedy best-first, A∗, weighted A∗, IDA∗, . . .

I heuristic search (local):
hill-climbing, simulated annealing, beam search, . . .
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Design Choice: Search Control

How to apply explicit search to planning?  many design choices!

Design Choice: Search Control
I heuristics for informed search algorithms

I pruning techniques: invariants, symmetry elimination,
partial-order reduction, helpful actions pruning, . . .

How do we find good heuristics in a domain-independent way?

 one of the main focus areas of classical planning research

 Parts C–F
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B1.3 SAT Planning
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SAT Planning: Basic Idea

I formalize problem of finding plan with a given horizon
(length bound) as a propositional satisfiability problem
and feed it to a generic SAT solver

I to obtain a (semi-) complete algorithm,
try with increasing horizons until a plan is found
(= the formula is satisfiable)

I important optimization: allow applying several non-conflicting
operators “at the same time” so that a shorter horizon suffices
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SAT Encodings: Variables

I given propositional planning task 〈V , I ,O, γ〉
I given horizon T ∈ N0

Variables of SAT Encoding

I propositional variables v i for all v ∈ V , 0 ≤ i ≤ T
encode state after i steps of the plan

I propositional variables o i for all o ∈ O, 1 ≤ i ≤ T
encode operator(s) applied in i-th step of the plan
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Design Choice: SAT Encoding

Again, there are several important design choices.

Design Choice: SAT Encoding
I sequential or parallel

I many ways of modeling planning semantics in logic

 main focus of research on SAT planning
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Design Choice: SAT Solver

Again, there are several important design choices.

Design Choice: SAT Solver
I out-of-the-box like MiniSAT, Glucose, Lingeling

I planning-specific modifications
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Design Choice: Evaluation Strategy

Again, there are several important design choices.

Design Choice: Evaluation Strategy
I always advance horizon by +1 or more aggressively

I possibly probe multiple horizons concurrently
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B1.4 Symbolic Search
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Symbolic Search Planning: Basic Ideas

I search processes sets of states at a time

I operators, goal states, state sets reachable with a given cost
etc. represented by binary decision diagrams (BDDs)
(or similar data structures)

I hope: exponentially large state sets can be represented as
polynomially sized BDDs, which can be efficiently processed

I perform symbolic breadth-first search (or something
more sophisticated) on these set representations
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Symbolic Breadth-First Progression Search

prototypical algorithm:

Symbolic Breadth-First Progression Search

def bfs-progression(V , I , O, γ):
goal states := models(γ)
reached0 := {I}
i := 0
loop:

if reachedi ∩ goal states 6= ∅:
return solution found

reachedi+1 := reachedi ∪ apply(reachedi ,O)
if reachedi+1 = reachedi :

return no solution exists
i := i + 1

 If we can implement operations models, {I}, ∩, 6= ∅, ∪,

 

apply and = efficiently, this is a reasonable algorithm.
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Design Choice: Symbolic Data Structure

Again, there are several important design choices.

Design Choice: Symbolic Data Structure
I BDDs

I ADDs

I EVMDDs

I SDDs
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Other Design Choices

I additionally, same design choices as for explicit search:
I search direction
I search algorithm
I search control (incl. heuristics)

I in practice, hard to make heuristics and other
advanced search control efficient for symbolic search
 rarely used
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B1.5 Planning System Examples
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Planning Systems: FF

FF (Hoffmann & Nebel, 2001)
I problem class: satisficing

I algorithm class: explicit search

I search direction: forward search

I search algorithm: enforced hill-climbing

I heuristic: FF heuristic (inadmissible)

I other aspects: helpful action pruning; goal agenda manager

 breakthrough for heuristic search planning;

 

winner of IPC 2000
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Planning Systems: LAMA

LAMA (Richter & Westphal, 2008)
I problem class: satisficing

I algorithm class: explicit search

I search direction: forward search

I search algorithm: restarting Weighted A* (anytime)

I heuristic: FF heuristic and landmark heuristic (inadmissible)

I other aspects: preferred operators; deferred heuristic
evaluation; multi-queue search

 still one of the leading satisficing planners;

 

winner of IPC 2008 and IPC 2011 (satisficing tracks)
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Planning Systems: Fast Downward Stone Soup

Fast Downward Stone Soup (Helmert et al., 2011)
I problem class: optimal

I algorithm class: (portfolio of) explicit search

I search direction: forward search

I search algorithm: A∗

I heuristic: LM-cut; merge-and-shrink; landmarks;
blind (admissible)

 winner of IPC 2011 (optimal track)
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Planning Systems: SymBA∗

SymBA∗ (Torralba, 2015)
I problem class: optimal

I algorithm class: symbolic search

I symbolic data structure: BDDs

I search direction: bidirectional

I search algorithm: mixture of (symbolic) Dijkstra and A∗

I heuristic: perimeter abstractions/blind

 winner of IPC 2014 (optimal track)
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B1.6 Summary
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Summary

big three classes of algorithms for classical planning:
I explicit search

I design choices: search direction, search algorithm,
search control (incl. heuristics)

I SAT planning
I design choices: SAT encoding, SAT solver, evaluation strategy

I symbolic search
I design choices: symbolic data structure

+ same ones as for explicit search
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