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A8. Computational Complexity of Planning

How Difficult is Planning?

» Using state-space search (e.g., using Dijkstra’s algorithm
on the transition system), planning can be solved
in polynomial time in the number of states.

> However, the number of states is exponential in the number
of state variables, and hence in general exponential
in the size of the input to the planning algorithm.

$

Do non-exponential planning algorithms exist?

i

What is the precise computational complexity of planning?
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Motivation

A8. Computational Complexity of Planning Motivation

Why Computational Complexity?

» understand the problem
» know what is not possible
» find interesting subproblems that are easier to solve

> distinguish essential features from syntactic sugar

» Is STRIPS planning easier than general planning?
» Is planning for FDR tasks harder than for propositional tasks?
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A8.2 Background: Complexity
Theory
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A8. Computational Complexity of Planning Background: Complexity Theory

Reminder: Complexity Theory

Need to Catch Up?
> We assume knowledge of complexity theory:
» languages and decision problems
» Turing machines: NTMs and DTMs;
polynomial equivalence with other models of computation
» complexity classes: P, NP, PSPACE
» polynomial reductions
» If you are not familiar with these topics, we recommend
Chapters C7, E1-E3, E6 of the Theory of Computer Science
course at https://dmi.unibas.ch/en/academics/
computer-science/courses-in-spring-semester-2020/
lecture-theory-of-computer-science/
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A8. Computational Complexity of Planning Background: Complexity Theory

Turing Machines: Conceptually

infinite tape
~[glg]dlvlalclalc|allc|alofO] [--
|
read-write head
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Turing Machines

Definition (Nondeterministic Turing Machine)
A nondeterministic Turing machine (NTM) is a 6-tuple
(X,0,Q, q0, gv, ) with the following components:
» input alphabet ¥ and blank symbol [0 ¢ &
» alphabets always nonempty and finite
> tape alphabet ¥ =X U {0}
> finite set @ of internal states with initial state gp € Q@
and accepting state gy € Q
> nonterminal states Q" := Q \ {gv}

> transition relation § : (Q' x ) — 2@xTox{-1+1}

Deterministic Turing machine (DTM):
|0(g,s)| =1 forall (g,s) € Q' x Xy
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Turing Machines: Accepted Words

» Initial configuration
> state qo
» input word on tape, all other tape cells contain [J
> head on first symbol of input word
> Step
> If in state g, reading symbol s, and (¢’,s’,d) € (g, s) then
» the NTM can transition to state q’, replacing s with s’ and
moving the head one cell to the left/right (d = —1/+1).

» Input word (€ X*) is accepted if some sequence of transitions
brings the NTM from the initial configuration into state sy.
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Acceptance in Time and Space

Definition (Acceptance of a Language in Time/Space)
Let f : Ng — Np.

A NTM accepts language L C ¥* in time f if it accepts each w € L
within f(|w]|) steps and does not accept any w ¢ L (in any time).

It accepts language L C X* in space f if it accepts each w € L
using at most f(|w|) tape cells and does not accept any w ¢ L.
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Time and Space Complexity Classes

Definition (DTIME, NTIME, DSPACE, NSPACE)
Let f : Ng — Np.

Complexity class DTIME(f) contains all languages
accepted in time f by some DTM.

Complexity class NTIME(f) contains all languages
accepted in time f by some NTM.

Complexity class DSPACE(f) contains all languages
accepted in space f by some DTM.

Complexity class NSPACE(f) contains all languages
accepted in space f by some NTM.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Background: Complexity Theory

13 /31

A8. Computational Complexity of Planning Background: Complexity Theory

Polynomial Time and Space Classes

Let P be the set of polynomials p : Ng — Ny
whose coefficients are natural numbers.

Definition (P, NP, PSPACE, NPSPACE)
P = U,cp DTIME(p)
NP = U,cp NTIME(p)
PSPACE = J,,.p DSPACE(p)
NPSPACE = J ., NSPACE(p)
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Polynomial Complexity Class Relationships

Theorem (Complexity Class Hierarchy)
P C NP C PSPACE = NPSPACE

Proof.

P € NP and PSPACE C NPSPACE are obvious because
deterministic Turing machines are a special case of
nondeterministic ones.

NP C NPSPACE holds because a Turing machine can only visit
polynomially many tape cells within polynomial time.

PSPACE = NPSPACE is a special case of a classical result
known as Savitch's theorem (Savitch 1970).
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A8.3 (Bounded-Cost) Plan Existence
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Decision Problems for Planning

Definition (Plan Existence)

Plan existence (PLANEX) is the following decision problem:

GIVEN: planning task Il
QUESTION: s there a plan for 17

~~ decision problem analogue of satisficing planning

Definition (Bounded-Cost Plan Existence)

Bounded-cost plan existence (BCPLANEX)
is the following decision problem:

GIVEN: planning task [1, cost bound K € Ny
QUESTION: s there a plan for 1 with cost at most K7

~ decision problem analogue of optimal planning
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Plan Existence vs. Bounded-Cost Plan Existence

Theorem (Reduction from PLANEX to BCPLANEX)
PrLAaNEX <, BCPLANEX

Proof.
Consider a planning task I1 with state variables V.

Let cmax be the maximal cost of all operators of 1.

Compute the number of states of I as N = [, cy|dom(v)|.
(For propositional state variable, define dom(v) = {T,F}.)

M is solvable iff there is solution with cost at most cmax - (N — 1)
because a solution need not visit any state twice.

~» map instance N of PLANEX to instance (I, cmax - (N — 1))
of BCPLANEX

~> polynomial reduction
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A8.4 PSPACE-Completeness of

Planning
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Membership in PSPACE

PSPACE-Completeness

Theorem
BCPLANEX € PSPACE

Proof.
Show BCPLANEX € NPSPACE and use Savitch's theorem.
Nondeterministic algorithm:
def plan((V,/,0,7), K):
s:=1
k=K
loop forever:
if s = v: accept
guess 0 € O
if o is not applicable in s: fail
if cost(o) > k: fail
s:=s[o]
k := k — cost(0)
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A8. Computational Complexity of Planning PSPACE-Completeness of Planning

PSPACE-Hardness

Idea: generic reduction

» For an arbitrary fixed DTM M with space bound polynomial p
and input w, generate propositional planning task
which is solvable iff M accepts w in space p(|w]).

> Without loss of generality, we assume p(n) > n for all n.
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Reduction: State Variables

Let M = (X,00, Q, qo, gy, ) be the fixed DTM,
and let p be its space-bound polynomial.

Given input ws ... w,, define relevant tape positions
X :={=p(n),....p(n)}
State Variables

> stateq for all g € Q

» head; for all i € X U{—p(n) —1,p(n) +1}

> content; , forall i€ X, ac ¥n

~> allows encoding a Turing machine configuration
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Reduction: Initial State

Let M = (X,0, Q, qo, gy, 9) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wy ... w,, define relevant tape positions
X :={=p(n),....p(n)}
Initial State
Initially true:
> stateg,
> head;
» content;,, forall i e {1,...,n}
» content; for all i € X\ {1,...,n}
Initially false:
> all others
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Reduction: Operators

Let M = (X,0, Q, qo, gy, ) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wj ... w,, define relevant tape positions

X = {=p(n)..... p(n)}

Operators
One operator for each transition rule §(q,a) = (¢', d, d)
and each cell position i € X:

> precondition: state; A head; A content; ,

> effect: —statey A —head; A —~content; ,
A statey A head;q A content;

Note that add-after-delete semantics are important here!
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Reduction: Goal

Let M = (X,0, Q, qo, gy, ) be the fixed DTM,
and let p be its space-bound polynomial.

Given input wj ... w,, define relevant tape positions
X i={=p(n).....p(n)}

Goal
stateg,
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PSPACE-Completeness of STRIPS Plan Existence

Theorem (PSPACE-Completeness; Bylander, 1994)
PLANEX and BCPLANEX are PSPACE-complete.
This is true even if only STRIPS tasks are allowed.

Proof.
Membership for BCPLANEX was already shown.

Hardness for PLANEX follows because we just presented a
polynomial reduction from an arbitrary problem in PSPACE to
PLANEX. (Note that the reduction only generates STRIPS tasks,
after trivial cleanup to make them conflict-free.)

Membership for PLANEX and hardness for BCPLANEX follow
from the polynomial reduction from PLANEX to BCPLANEX. [
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A8.5 More Complexity Results
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More Complexity Results

In addition to the basic complexity result presented in this chapter,
there are many special cases, generalizations, variations and related
problems studied in the literature:

» different planning formalisms

> e.g., nondeterministic effects, partial observability, schematic
operators, numerical state variables

» syntactic restrictions of planning tasks

> e.g., without preconditions, without conjunctive effects,
STRIPS without delete effects

P semantic restrictions of planning task

> e.g., restricting variable dependencies ( “causal graphs”)
» particular planning domains

» e.g., Blocksworld, Logistics, FreeCell
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Complexity Results for Different Planning Formalisms

Some results for different planning formalisms:
» nondeterministic effects:
» fully observable: EXP-complete (Littman, 1997)
> unobservable: EXPSPACE-complete (Haslum & Jonsson,
1999)
> partially observable: 2-EXP-complete (Rintanen, 2004)
» schematic operators:
> usually adds one exponential level to PLANEX complexity
> e.g., classical case EXPSPACE-complete (Erol et al., 1995)
» numerical state variables:
» undecidable in most variations (Helmert, 2002)
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A8.6 Summary
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Summary
» PSPACE: decision problems solvable in polynomial space
> P C NP C PSPACE = NPSPACE.
» Classical planning is PSPACE-complete.
» This is true both for satisficing and optimal planning

(rather, the corresponding decision problems).

v

The hardness proof is a polynomial reduction that translates
an arbitrary polynomial-space DTM into a STRIPS task:

> DTM configurations are encoded by state variables.
> Operators simulate transitions between DTM configurations.
» The DTM accepts an input iff there is a plan
for the corresponding STRIPS task.
» This implies that there is no polynomial algorithm
for classical planning unless P = PSPACE.

> It also means that planning is not polynomially reducible
to any problem in NP unless NP = PSPACE.
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