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Invariants

m When we as humans reason about planning tasks,
we implicitly make use of “obvious”’ properties of these tasks.

m Example: we are never in two places at the same time

m We can represent such properties as formulas ¢
that are true in all reachable states.

m Example: ¢ = —(at-uni A\ at-home)

m Such formulas are called invariants of the task.
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Invariants: Definition

Definition (Invariant)

An invariant of a planning task 1 with state variables V
is a formula ¢ over V with s |= ¢ for all reachable states s of I1.
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Computing Invariants

How does an automated planner come up with invariants?

m Theoretically, testing if a formula ¢ is an invariant
is as hard as planning itself.
~» proof idea: a planning task is unsolvable iff
the negation of its goal is an invariant

m Still, many practical invariant synthesis algorithms exist.

m To remain efficient (= polynomial-time), these algorithms
only compute a subset of all useful invariants.
~+ sound, but not complete

m Empirically, they tend to at least find the “obvious”
invariants of a planning task.
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Invariant Synthesis Algorithms

Most algorithms for generating invariants are based on
the generate-test-repair approach:

m Generate: Suggest some invariant candidates, e.g., by
enumerating all possible formulas ¢ of a certain size.
m Test: Try to prove that ¢ is indeed an invariant.
Usually done inductively:
@ Test that initial state satisfies (.
@ Test that if ¢ is true in the current state,
it remains true after applying a single operator.
m Repair: If invariant test fails, replace candidate ¢
by a weaker formula, ideally exploiting why the proof failed.
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Reformulation

Invariant Synthesis: References

We will not cover invariant synthesis algorithms in this course.

Literature on invariant synthesis:
m DISCOPLAN (Gerevini & Schubert, 1998)
m TIM (Fox & Long, 1998)
m Edelkamp & Helmert's algorithm (1999)
m Bonet & Geffner's algorithm (2001)
m Rintanen's algorithm (2008)
m Fact-alternating mutex groups (Fiser & Komenda, 2018)

Summary
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Exploiting Invariants

Invariants have many uses in planning:

m Regression search:
Prune subgoals that violate (are inconsistent with) invariants.

m Planning as satisfiability:
Add invariants to a SAT encoding of a planning task
to get tighter constraints.

m Proving unsolvability:
If ¢ is an invariant such that ¢ A 7y is unsatisfiable,
the planning task with goal ~ is unsolvable.
m Finite-Domain Reformulation:
Derive a more compact FDR representation (equivalent, but
with fewer states) from a given propositional planning task.

We now discuss the last point because it connects
to our discussion of propositional vs. FDR planning tasks.
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Reminder: Blocks World (Propositional Variables)

Example

s(A-on-B) =

s(A-on-C) =
s(A-on-table) =
s(B-on-A) =
s(B-on-C) =

_I_
_I_
F
F
F
F
T

~s 29 = 512 states
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Reminder: Blocks World (Finite-Domain Variables)

Example

Use three finite-domain state variables:
m below-a: {b,c,table}
m below-b: {a,c,table}
m below-c: {a,b,table}

s(below-a) = table
s(below-b) = a

s(below-c) = table

~ 33 = 27 states
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Task Reformulation

m Common modeling languages (like PDDL)
often give us propositional tasks.

m More compact FDR tasks are often desirable.

m Can we do an automatic reformulation?
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Mutexes

Invariants that take the form of binary clauses are called mutexes
because they express that certain variable assignments
cannot be simultaneously true (are mutually exclusive).

Example (Blocks World)

The invariant —A-on-BV —A-on-C states that
A-on-B and A-on-C are mutex.

We say that a set of literals is a mutex group
if every subset of two literals is a mutex.

Example (Blocks World)

{A-on-B, A-on-C, A-on-table} is a mutex group.
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Encoding Mutex Groups as Finite-Domain Variables

Let G = {¢1,...,¢,} be a mutex group over n different
propositional state variables Vg = {v1,...,vn}.

Then a single finite- domain state variable vg with
dom(vg) = {l1,...,¢n,none} can replace the n variables Vg:

ms(vg) =Y represents situations where (exactly) ¢; is true

m s(vg) = none represents situations where all ¢; are false

Note: We can omit the “none” value if £1 V---V £, is an invariant.
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Mutex Covers

Definition (Mutex Cover)

A mutex cover for a propositional planning task 1
is a set of mutex groups {Gi, ..., G,} where each variable of I
occurs in exactly one group G;.

A mutex cover is positive if all literals in all groups are positive.

Note: always exists (use trivial group {v} if v otherwise uncovered)
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Positive Mutex Covers

In the following, we stick to positive mutex covers for simplicity.

If we have —v in G for some group G in the cover, we can
reformulate the task to use an “opposite” variable V instead,
as in the conversion to positive normal form (Chapter A6).
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Mutex-Based Reformulation of Propositional Tasks

Given a conflict-free propositional planning task Il
with positive mutex cover {G, ..., Gp}:

m In all conditions where variable v € G; occurs,
replace v with vg, = v.
m In all effects e where variable v € G; occurs,

m Replace all atomic add effects v with vg, == v
m Replace all atomic delete effects —v with
(v, = v A=V, ey effcond(V', e)) > vg, := none

This results in an FDR planning task I’ that is equivalent to I
(without proof).

Note: the conditional effects can often be simplified away
to an unconditional or empty effect.
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And Back?

m It can also be useful to reformulate an FDR task
into a propositional task.

m For example, we might want positive normal form,
which requires a propositional task.

m Key idea: each variable/value combination v = d
becomes a separate propositional state variable (v, d)



Invariants Mutex Reformulation Summary

00000000 oooe

Converting FDR Tasks into Propositional Tasks

Definition (Induced Propositional Planning Task)

Let M= (V,I,O,~) be a conflict-free FDR planning task.
The induced propositional planning task M’
is the propositional planning task M = (V' I, O',~'), where
V' ={(v,d)|veV,decdom(v)}
m '({v,d))=Tiff I(v)=d
m O’ and 7/ are obtained from O and ~ by

m replacing each atomic formula v = d by the proposition (v, d)
m replacing each atomic effect v := d by the effect

<V, d> A\ /\d’edom(v)\{d} _'<V, d’>

Notes:

m Again, simplifications are often possible
to avoid introducing so many delete effects.

m SAST tasks induce STRIPS tasks
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Summary

® Invariants are common properties of all reachable states,
expressed as formulas.

m Mutexes are invariants that express that certain literals
are mutually exclusive.

m Mutex covers provide a way to express the information in a set
of propositional state variables in a (potentially much smaller)
set of finite-domain state variables.

m Using mutex covers, we can reformulate propositional tasks
as more compact FDR tasks.

m Conversely, we can reformulate FDR tasks as propositional
tasks by introducing propositions for each variable/value pair.
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