Planning and Optimization
A4. Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

[Foundations |
~| Logic |

—I Heuristics |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

State Variables
©0000000

State Variables

State Variables

0O@000000

State Variables

How to specify huge transition systems
without enumerating the states?

m represent different aspects of the world
in terms of different state variables (Boolean or finite domain)

m individual state variables induce atomic propositions
~> a state is a valuation of state variables

m n Boolean state variables induce 2" states
~» exponentially more compact than “flat” representations

Example: O(n?) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks

Hmmlm Tasks Summary

State Variables
00®00000

Blocks World State with Prop05|t|ona| Variables

Example

s(A-on-B) =
s(A-on-C) =
s(A-on-table) =

Note: it may be useful to add auxiliary state variables like A-clear.

State Variables Operato Planning Tasks Summary
00080000 fe Y0000 00000

Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:
m below-a: {b,c,table}
m below-b: {a,c,table}
m below-c: {a,b,table}

s(below-a) = table
s(below-b) = a

s(below-c) = table

~ 33 = 27 states

<

Note: it may be useful to add auxiliary state variables like above-a.

State Variables

[e]e]e]e] lelele)

Propositional State Variables

Definition (Propositional State Variable)

A propositional state variable is a symbol X.
Let V be a finite set of propositional state variables.

A state s over V is a valuation for V, i.e.,
a truth assignment s : V — {T,F}.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.

State Variables

00000e00

Propositional State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V' is an assignment s : V — J,c\ dom(v)
such that s(v) € dom(v) for all v € V.

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v € V and d € dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical valuations

where s |= v = d iff s(v) = d.

State Variables

[e]e]e]e]e]e] Jo) oe]

State Variables: Either/O

m State variables are the basis of compact descriptions
of transition systems.

m For a given transition system, we will either use propositional
or finite-domain state variables. We will not mix them.
m However, finite-domain variables can have any finite domain

including the domain {T,F}, so are in some sense a proper
generalization of propositional state variables.

State Variables
0000000@

From State Variables to Succinct Transition Systems

Problem:
m How to succinctly represent transitions and goal states?

|dea: Use formulas to describe sets of states
m states: all assignments to the state variables

m goal states: defined by a formula
m transitions: defined by operators (see following section)

Operators
©000000000000

Operators

Operators

O@00000000000

Syntax of Operators

Definition (Operator)
An operator o over state variables V' is an object
with three properties:
m a precondition pre(o), a formula over V
m an effect eff0) over V, defined on the following slides

m a cost cost(o) € RY

Notes:
m Operators are also called actions.
m Operators are often written as triples (pre(o), eff(0), cost(0)).

m This can be abbreviated to pairs (pre(o), eff(0))
when the cost of the operator is irrelevant.

Operators

00@0000000000

Operators: Intuition

Intuition for operators o:

m The operator precondition describes the set of states
in which a transition labeled with o can be taken.

m The operator effect describes how taking such a transition
changes the state.

m The operator cost describes the cost of taking a transition
labeled with o.

Operators

000@000000000

Syntax of Effects

Definition (Effect)
Effects over state variables V are inductively defined as follows:

m If v € V is a propositional state variable,
then v and —v are effects (atomic effect).

m If v € V is a finite-domain state variable and d € dom(v),
then v := d is an effect (atomic effect).

m If e,..., e, are effects, then (e; A --- A e,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.

m If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

Operators

0000@00000000

Effects: Intuition

Intuition for effects:
m Atomic effects can be understood as assignments
that update the value of a state variable.
m For propositional state variables, v means “v :=T"
and —v means “v :=F".
m A conjunctive effect e = (e1 A -+ A ep) means that
all subeffects e, ..., e, take place simultaneously.

m A conditional effect e = (x > €’) means that subeffect €’
takes place iff x is true in the state where e takes place.

Summary

Operators
00000@0000000

Semantics of Effects

Definition (Effect Condition for an Effect)

Let e be an atomic effect.
The effect condition effcond(e, ') under which e triggers
given the effect €’ is a propositional formula defined as follows:

m effcond(e,e) =T

m effcond(e, e’) = L for atomic effects e’ # e

m effcond(e, (e1 A\ ---Aep)) = effcond(e, e1) V - - -V effcond(e, ep)
m effcond(e, (x > €')) = x A effcond(e, €')

<

Intuition: effcond(e, €') represents the condition that must be true
in the current state for the effect €’ to lead to the atomic effect e

Operators

0000008000000

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V, and let o be an operator over V.
Operator o is applicable in s if s = pre(o).

If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s’ defined as follows for all v € V:

T if s |= effcond(v, e)
s'(v)=<F if s = effcond(—v, e) A\ —effcond(v, e)
s(v) if s [~ effcond(v, e) V effcond(—v, e)

where e = eff{0).

Summary

Operators

0000008000000

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V, and let o be an operator over V.
Operator o is applicable in s if s = pre(o).

If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s’ defined as follows for all v € V:

T if s |= effcond(v, e)
s'(v)=<F if s = effcond(—v, e) N\ —effcond(v, e)
s(v) if s [~ effcond(v, e) V effcond(—v, e)

where e = eff{0).

Summary

Operators

[e]e]e]elo]ele] lelele]e]e]

Add-after-Delete Semantics

Note:

m The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

m This is called add-after-delete semantics.

m This detail of semantics is somewhat arbitrary,
but has proven useful in applications.

m For finite-domain variables, there are no distinguished values
like “true” and “false”, and a different semantics is used.

Operators Planning Tasks

0000000080000

Conflicting Effects and Consistency Condition

m What should an effect of the form v:=a A v:=b mean?

m For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V.

The consistency condition for e, consist(e) is defined as

/\ /\ —(effcond(v := d, e) A effcond(v := d’, €)).
VeV d,d’edom(v),d£d’

Operators

0000000008000

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables.
Let s be a state over V, and let o be an operator over V.
Operator o is applicable in s if s = pre(o) A consist(eff 0)).

If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s’ defined as follows for all v € V:

s'(v) =

{d if s |= effcond(v := d, eff0)) for some d € dom(v)

s(v) otherwise

Planning Tasks Summary

Operators

0000000000 e00

Applyl ng Operators: Example

Example

Consider the operator o = (a, —a A (—c > —b))

and the state s={a—~ T,b—~ T,c— T,d — T}.

The operator o is applicable in s because s = a.

Effect conditions of effo):

effcond(a, eff(0)) = effcond(a, —a A (—c > b))

= effcond(a, —a) V effcond(a, ~c > —b)
= 1 V (—c A effcond(a, —b))
=1V(-cAl)

=1 ~» falsein state s

State Variables Operators ask: Summary

0000000000 e00

Applying Operators: Example

Example

Consider the operator o = (a, —a A (—c > —b))
and the state s={a—~ T,b—~ T,c— T,d — T}.

The operator o is applicable in s because s = a.
Effect conditions of effo):
effcond(—a, eff{0)) = effcond(—a, —a A (—c > —b))
= effcond(—a, —a) V effcond(—a, —c > —b)
= T V effcond(—a, ~c > —b)

=T ~v truein state s

Operators

0000000000 e00

Applyl ng Operators: Example

Example

Consider the operator o = (a, —a A (—c > —b))

and the state s={a—~ T,b—~ T,c— T,d — T}.

The operator o is applicable in s because s = a.

Effect conditions of effo):

effcond(b, eff 0)) = effcond(b, —a A (—c > —b))

= effcond(b, —a) V effcond(b, —c > —b)
= 1 V (—c A effcond(b, —b))
=1V(-cAl)

=1 ~~ falsein state s

Operators

0000000000 e00

Applyl ng Operators: Example

Example

Consider the operator o = (a, —a A (—c > —b))
and the state s={a—~ T,b—~ T,c— T,d — T}.

The operator o is applicable in s because s = a.
Effect conditions of effo):
effcond(—b, eff0)) = effcond(—b,—a A (—c > —b))
= effcond(—b, —a) V effcond(—b, —~c > —b)
= 1 V (—c A effcond(—b, —b))
=1V(-cAT)

=-c ~- false in state s

State Variables Operators ’lanning Task Summary

0000000000 e00

Applying Operators: Example

Example

Consider the operator o = (a, —a A (—c > —b))
and the state s={a—~ T,b—~ T,c— T,d — T}.

The operator o is applicable in s because s = a.
Effect conditions of effo):

effcond(c, eff o

effcond(—c, eff(o

effcond(d, eff o
effcond(—d, eff o

false in state s
false in state s

false in state s

~— — ~— —
~— ~— ~— —
Il

1 o~
1 o~
1 o~
1~ false in state s

The resulting state of applying o in s is the state
{amF,b—T,c—T,d— T}

Operators

0000000000080

Example Operators: Blocks World

Example (Blocks World Operators)

To model blocks world operators conveniently,

we use auxiliary state variables A-clear, B-clear, and C-clear
to express that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

A-clear \ A-on-table N\ B-clear, A-on-B A —A-on-table A —B-clear)
A-clear \ A-on-table A C-clear, A-on-C A\ —A-on-table A —C-clear)
A-clear \ A-on-B, A-on-table A —A-on-B A B-clear)

A-clear A A-on-C, A-on-table A —=A-on-C A C-clear)

A-clear A A-on-B N\ C-clear, A-on-C A —A-on-B A B-clear A —C-clear)
A-clear A\ A-on-C N\ B-clear, A-on-B A\ —A-on-C A C-clear A —~B-clear)

(
(
(
(
(
(

Operators Summary
00000000000C0CE® 00000 [e]e)

Example Operator: 4-Bit Counter

Example (Incrementing a 4-Bit Counter)

Operator to increment a 4-bit number b3by by by represented
by 4 state variables by, ..., bs:

precondition:
=bg V —b1 V —by V —bs

effect:

(mbo > bg) A
((—|b1 VAN bo) > (bl A —|b0)) N
((mb2 A by A bg) > (b2 A =b1 A —bg)) A
((—|b3 ANby A\ by A bo) > (b3 A =by A =b; A —|b0))

Planning Tasks

Planning Tasks

[e] le]e]e}

Planning Tasks

Definition (Planning Task)
A planning task is a 4-tuple N = (V, I, O,) where

m V is a finite set of state variables,

m / is a valuation over V called the initial state,
m O is a finite set of operators over V, and

m 7 is a formula over V called the goal.

V must either consist only of propositional
or only of finite-domain state variables.

In the first case, [is called a propositional planning task,
otherwise an FDR planning task (finite-domain representation).

Note: Whenever we just say planning task (without
“propositional” or "FDR"), both kinds of tasks are allowed.

Planning Tasks Summary
0000 00

Definition (Transition System Induced by a Planning Task)

The planning task I = (V, I, O,~) induces
the transition system 7 (1) = (S, L, c, T, sp, Si), where
S is the set of all states over V,

L is the set of operators O,

c(0) = cost(o) for all operators o € O,

T ={(s,0,5') | s€ S, o applicable in s, s’ = s[o]},
so =/, and

S,={seS|skE=v}

Planning Tasks
000@0

Planning Tasks: Terminology

m Terminology for transitions systems is also applied
to the planning tasks 1 that induce them.

m For example, when we speak of the states of [1,
we mean the states of 7 (I).

m A sequence of operators that forms a solution of 7 ()
is called a plan of IN.

Oper.

Planning Tasks Summar
0000e 00

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Il
Output: a plan for I, or unsolvable if no plan for I1 exists

\

Definition (Optimal Planning)

Given: a planning task I1
Output: a plan for 1 with minimal cost among all plans for I,
or unsolvable if no plan for I exists

A

[Je]

Summary

Summary

oe

Summary

m Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

m They are based on concepts from propositional logic,
enhanced to model state change.

m Planning tasks can be propositional or finite-domain.
m States of planning tasks are assignments to its state variables.

m Operators of propositional planning tasks describe
in which situations (precondition), how (effect) and
at which cost the state of the world can be changed.

m In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

m In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

	State Variables
	

	Operators
	

	Planning Tasks
	

	Summary
	

