

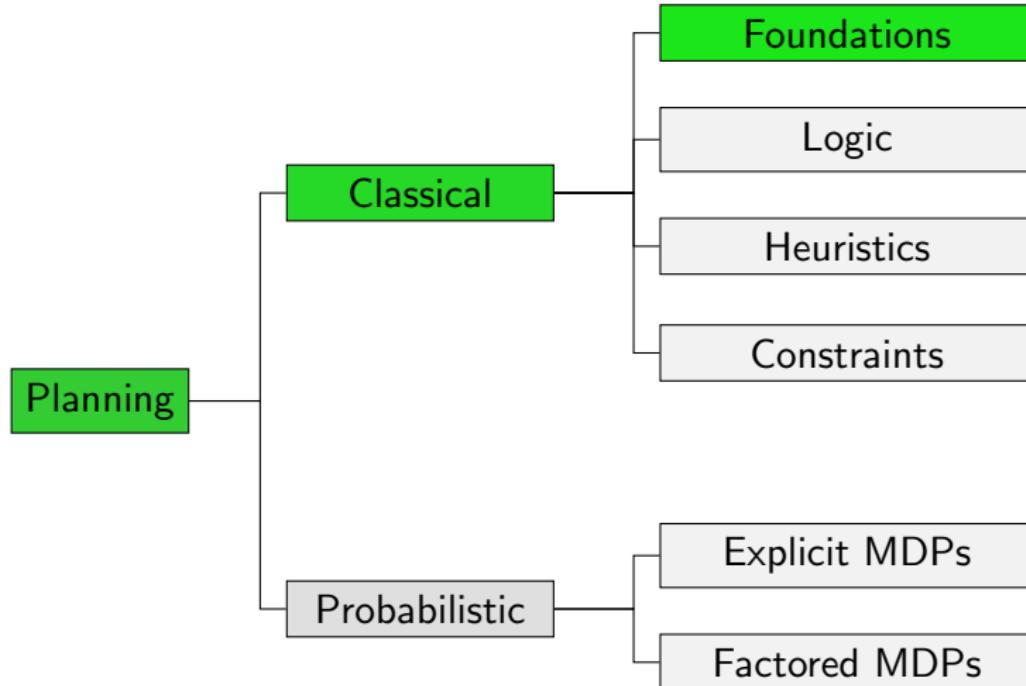
Planning and Optimization

A4. Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course



State Variables
●oooooooo

Operators
oooooooooooo

Planning Tasks
ooooo

Summary
oo

State Variables

State Variables

How to specify huge transition systems without enumerating the states?

- represent different aspects of the world in terms of different **state variables** (Boolean or finite domain)
- individual state variables induce atomic propositions
~~ a state is a **valuation of state variables**
- n Boolean state variables induce 2^n states
~~ **exponentially more compact** than “flat” representations

Example: $O(n^2)$ Boolean variables or $O(n)$ finite-domain variables with domain size $O(n)$ suffice for blocks world with n blocks

Blocks World State with Propositional Variables

Example

$$s(A\text{-on-}B) = \text{F}$$

$$s(A\text{-on-}C) = \text{F}$$

$$s(A\text{-on-table}) = \text{T}$$

$$s(B\text{-on-}A) = \text{T}$$

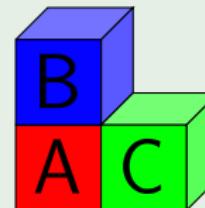
$$s(B\text{-on-}C) = \text{F}$$

$$s(B\text{-on-table}) = \text{F}$$

$$s(C\text{-on-}A) = \text{F}$$

$$s(C\text{-on-}B) = \text{F}$$

$$s(C\text{-on-table}) = \text{T}$$



Note: it may be useful to add auxiliary state variables like *A-clear*.

Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:

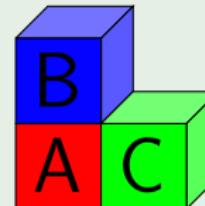
- *below-a*: {b, c, table}
- *below-b*: {a, c, table}
- *below-c*: {a, b, table}

$s(below-a) = \text{table}$

$$s(below-b) = a$$

$s(below-c) = \text{table}$

$$\rightsquigarrow 3^3 = 27 \text{ states}$$



Note: it may be useful to add auxiliary state variables like *above-a*.

Propositional State Variables

Definition (Propositional State Variable)

A **propositional state variable** is a symbol X .

Let V be a finite set of propositional state variables.

A **state** s over V is a valuation for V , i.e.,
a truth assignment $s : V \rightarrow \{\mathbf{T}, \mathbf{F}\}$.

A **formula** over V is a propositional logic formula using V
as the set of atomic propositions.

Propositional State Variables

Definition (Finite-Domain State Variable)

A **finite-domain state variable** is a symbol v with an associated **domain** $\text{dom}(v)$, which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A **state** s over V is an assignment $s : V \rightarrow \bigcup_{v \in V} \text{dom}(v)$ such that $s(v) \in \text{dom}(v)$ for all $v \in V$.

A **formula** over V is a propositional logic formula whose atomic propositions are of the form $v = d$ where $v \in V$ and $d \in \text{dom}(v)$.

Slightly extending propositional logic, we treat states s over finite-domain variables as **logical valuations** where $s \models v = d$ iff $s(v) = d$.

State Variables: Either/Or

- State variables are the basis of compact descriptions of transition systems.
- For a given transition system, we will either use propositional or finite-domain state variables. We will not mix them.
- However, finite-domain variables can have any finite domain including the domain $\{\mathbf{T}, \mathbf{F}\}$, so are in some sense a proper generalization of propositional state variables.

From State Variables to Succinct Transition Systems

Problem:

- How to succinctly represent transitions and goal states?

Idea: Use formulas to describe sets of states

- states: all assignments to the state variables
- goal states: defined by a formula
- transitions: defined by operators (see following section)

State Variables
oooooooo

Operators
●oooooooooooo

Planning Tasks
ooooo

Summary
oo

Operators

Syntax of Operators

Definition (Operator)

An **operator** o over state variables V is an object with three properties:

- a **precondition** $pre(o)$, a formula over V
- an **effect** $eff(o)$ over V , defined on the following slides
- a **cost** $cost(o) \in \mathbb{R}_0^+$

Notes:

- Operators are also called **actions**.
- Operators are often written as triples $\langle pre(o), eff(o), cost(o) \rangle$.
- This can be abbreviated to pairs $\langle pre(o), eff(o) \rangle$ when the cost of the operator is irrelevant.

Operators: Intuition

Intuition for operators o :

- The operator precondition describes the set of states in which a transition labeled with o can be taken.
- The operator effect describes how taking such a transition changes the state.
- The operator cost describes the cost of taking a transition labeled with o .

Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

- If $v \in V$ is a propositional state variable, then v and $\neg v$ are effects (atomic effect).
- If $v \in V$ is a finite-domain state variable and $d \in \text{dom}(v)$, then $v := d$ is an effect (atomic effect).
- If e_1, \dots, e_n are effects, then $(e_1 \wedge \dots \wedge e_n)$ is an effect (conjunctive effect).
The special case with $n = 0$ is the empty effect \top .
- If χ is a formula over V and e is an effect, then $(\chi \triangleright e)$ is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

Effects: Intuition

Intuition for effects:

- **Atomic effects** can be understood as assignments that update the value of a state variable.
 - For propositional state variables, v means " $v := T$ " and $\neg v$ means " $v := F$ ".
- A **conjunctive effect** $e = (e_1 \wedge \dots \wedge e_n)$ means that all subeffects e_1, \dots, e_n take place simultaneously.
- A **conditional effect** $e = (\chi \triangleright e')$ means that subeffect e' takes place iff χ is true in the state where e takes place.

Semantics of Effects

Definition (Effect Condition for an Effect)

Let e be an atomic effect.

The **effect condition** $effcond(e, e')$ under which e triggers given the effect e' is a propositional formula defined as follows:

- $effcond(e, e) = \top$
- $effcond(e, e') = \perp$ for atomic effects $e' \neq e$
- $effcond(e, (e_1 \wedge \dots \wedge e_n)) = effcond(e, e_1) \vee \dots \vee effcond(e, e_n)$
- $effcond(e, (\chi \triangleright e')) = \chi \wedge effcond(e, e')$

Intuition: $effcond(e, e')$ represents the condition that must be true in the current state for the effect e' to lead to the atomic effect e

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.

Let s be a state over V , and let o be an operator over V .

Operator o is **applicable** in s if $s \models \text{pre}(o)$.

If o is applicable in s , the **resulting state** of applying o in s , written $s\llbracket o \rrbracket$, is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} T & \text{if } s \models \text{effcond}(v, e) \\ F & \text{if } s \models \text{effcond}(\neg v, e) \wedge \neg \text{effcond}(v, e) \\ s(v) & \text{if } s \not\models \text{effcond}(v, e) \vee \text{effcond}(\neg v, e) \end{cases}$$

where $e = \text{eff}(o)$.

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.

Let s be a state over V , and let o be an operator over V .

Operator o is **applicable** in s if $s \models \text{pre}(o)$.

If o is applicable in s , the **resulting state** of applying o in s , written $s[\![o]\!]$, is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} T & \text{if } s \models \text{effcond}(v, e) \\ F & \text{if } s \models \text{effcond}(\neg v, e) \wedge \neg \text{effcond}(v, e) \\ s(v) & \text{if } s \not\models \text{effcond}(v, e) \vee \text{effcond}(\neg v, e) \end{cases}$$

where $e = \text{eff}(o)$.

Add-after-Delete Semantics

Note:

- The definition implies that if a variable is simultaneously “added” (set to T) and “deleted” (set to F), the value T takes precedence.
- This is called **add-after-delete semantics**.
- This detail of semantics is somewhat arbitrary, but has proven useful in applications.
- For finite-domain variables, there are no distinguished values like “true” and “false”, and a **different** semantics is used.

Conflicting Effects and Consistency Condition

- What should an effect of the form $v := a \wedge v := b$ mean?
- For finite-domain representations, the accepted semantics is to make this **illegal**, i.e., to make an operator **inapplicable** if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The **consistency condition** for e , $consist(e)$ is defined as

$$\bigwedge_{v \in V} \bigwedge_{d, d' \in \text{dom}(v), d \neq d'} \neg(\text{effcond}(v := d, e) \wedge \text{effcond}(v := d', e)).$$

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables.

Let s be a state over V , and let o be an operator over V .

Operator o is **applicable** in s if $s \models \text{pre}(o) \wedge \text{consist}(\text{eff}(o))$.

If o is applicable in s , the **resulting state** of applying o in s , written $s[o]$, is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} d & \text{if } s \models \text{effcond}(v := d, \text{eff}(o)) \text{ for some } d \in \text{dom}(v) \\ s(v) & \text{otherwise} \end{cases}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$
and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $eff(o)$:

$$\begin{aligned} effcond(a, eff(o)) &= effcond(a, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= effcond(a, \neg a) \vee effcond(a, \neg c \triangleright \neg b) \\ &= \perp \vee (\neg c \wedge effcond(a, \neg b)) \\ &= \perp \vee (\neg c \wedge \perp) \\ &\equiv \perp \quad \rightsquigarrow \text{false in state } s \end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$
and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $eff(o)$:

$$\begin{aligned} effcond(\neg a, eff(o)) &= effcond(\neg a, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= effcond(\neg a, \neg a) \vee effcond(\neg a, \neg c \triangleright \neg b) \\ &= T \vee effcond(\neg a, \neg c \triangleright \neg b) \\ &\equiv T \quad \rightsquigarrow \text{true in state } s \end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$
and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $eff(o)$:

$$\begin{aligned} effcond(b, eff(o)) &= effcond(b, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= effcond(b, \neg a) \vee effcond(b, \neg c \triangleright \neg b) \\ &= \perp \vee (\neg c \wedge effcond(b, \neg b)) \\ &= \perp \vee (\neg c \wedge \perp) \\ &\equiv \perp \quad \rightsquigarrow \text{false in state } s \end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$
and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $eff(o)$:

$$\begin{aligned} effcond(\neg b, eff(o)) &= effcond(\neg b, \neg a \wedge (\neg c \triangleright \neg b)) \\ &= effcond(\neg b, \neg a) \vee effcond(\neg b, \neg c \triangleright \neg b) \\ &= \perp \vee (\neg c \wedge effcond(\neg b, \neg b)) \\ &= \perp \vee (\neg c \wedge T) \\ &\equiv \neg c \quad \rightsquigarrow \text{false in state } s \end{aligned}$$

Applying Operators: Example

Example

Consider the operator $o = \langle a, \neg a \wedge (\neg c \triangleright \neg b) \rangle$
and the state $s = \{a \mapsto T, b \mapsto T, c \mapsto T, d \mapsto T\}$.

The operator o is applicable in s because $s \models a$.

Effect conditions of $eff(o)$:

$$effcond(c, eff(o)) \equiv \perp \rightsquigarrow \text{false in state } s$$

$$effcond(\neg c, eff(o)) \equiv \perp \rightsquigarrow \text{false in state } s$$

$$effcond(d, eff(o)) \equiv \perp \rightsquigarrow \text{false in state } s$$

$$effcond(\neg d, eff(o)) \equiv \perp \rightsquigarrow \text{false in state } s$$

The resulting state of applying o in s is the state
 $\{a \mapsto F, b \mapsto T, c \mapsto T, d \mapsto T\}$.

Example Operators: Blocks World

Example (Blocks World Operators)

To model blocks world operators conveniently, we use auxiliary state variables $A\text{-clear}$, $B\text{-clear}$, and $C\text{-clear}$ to express that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

- $\langle A\text{-clear} \wedge A\text{-on-table} \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-table} \wedge \neg B\text{-clear} \rangle$
- $\langle A\text{-clear} \wedge A\text{-on-table} \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-table} \wedge \neg C\text{-clear} \rangle$
- $\langle A\text{-clear} \wedge A\text{-on-}B, A\text{-on-table} \wedge \neg A\text{-on-}B \wedge B\text{-clear} \rangle$
- $\langle A\text{-clear} \wedge A\text{-on-}C, A\text{-on-table} \wedge \neg A\text{-on-}C \wedge C\text{-clear} \rangle$
- $\langle A\text{-clear} \wedge A\text{-on-}B \wedge C\text{-clear}, A\text{-on-}C \wedge \neg A\text{-on-}B \wedge B\text{-clear} \wedge \neg C\text{-clear} \rangle$
- $\langle A\text{-clear} \wedge A\text{-on-}C \wedge B\text{-clear}, A\text{-on-}B \wedge \neg A\text{-on-}C \wedge C\text{-clear} \wedge \neg B\text{-clear} \rangle$
- ...

Example Operator: 4-Bit Counter

Example (Incrementing a 4-Bit Counter)

Operator to increment a 4-bit number $b_3b_2b_1b_0$ represented by 4 state variables b_0, \dots, b_3 :

precondition:

$$\neg b_0 \vee \neg b_1 \vee \neg b_2 \vee \neg b_3$$

effect:

$$\begin{aligned} & (\neg b_0 \triangleright b_0) \wedge \\ & ((\neg b_1 \wedge b_0) \triangleright (b_1 \wedge \neg b_0)) \wedge \\ & ((\neg b_2 \wedge b_1 \wedge b_0) \triangleright (b_2 \wedge \neg b_1 \wedge \neg b_0)) \wedge \\ & ((\neg b_3 \wedge b_2 \wedge b_1 \wedge b_0) \triangleright (b_3 \wedge \neg b_2 \wedge \neg b_1 \wedge \neg b_0)) \end{aligned}$$

State Variables
oooooooo

Operators
oooooooooooo

Planning Tasks
●oooo

Summary
oo

Planning Tasks

Planning Tasks

Definition (Planning Task)

A **planning task** is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

- V is a finite set of **state variables**,
- I is a valuation over V called the **initial state**,
- O is a finite set of **operators** over V , and
- γ is a formula over V called the **goal**.

V must either consist only of propositional or only of finite-domain state variables.

In the first case, Π is called a **propositional planning task**, otherwise an **FDR planning task** (finite-domain representation).

Note: Whenever we just say **planning task** (without “propositional” or “FDR”), both kinds of tasks are allowed.

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_* \rangle$, where

- S is the set of all states over V ,
- L is the set of operators O ,
- $c(o) = cost(o)$ for all operators $o \in O$,
- $T = \{\langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s[o]\}$,
- $s_0 = I$, and
- $S_* = \{s \in S \mid s \models \gamma\}$.

Planning Tasks: Terminology

- Terminology for transitions systems is also applied to the planning tasks Π that induce them.
- For example, when we speak of the **states of Π** , we mean the states of $\mathcal{T}(\Pi)$.
- A sequence of operators that forms a solution of $\mathcal{T}(\Pi)$ is called a **plan** of Π .

Satisficing and Optimal Planning

By **planning**, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π

Output: a plan for Π , or **unsolvable** if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π

Output: a plan for Π with minimal cost among all plans for Π ,
or **unsolvable** if no plan for Π exists

State Variables
oooooooo

Operators
oooooooooooo

Planning Tasks
ooooo

Summary
●○

Summary

Summary

- Planning tasks compactly represent transition systems and are suitable as inputs for planning algorithms.
- They are based on concepts from propositional logic, enhanced to model state change.
- Planning tasks can be propositional or finite-domain.
- States of planning tasks are assignments to its state variables.
- Operators of propositional planning tasks describe in which situations (precondition), how (effect) and at which cost the state of the world can be changed.
- In satisficing planning, we must find a solution for a planning task (or show that no solution exists).
- In optimal planning, we must additionally guarantee that generated solutions are of minimal cost.