
Planning and Optimization
A4. Planning Tasks

Malte Helmert and Gabriele Röger

Universität Basel

State Variables Operators Planning Tasks Summary

Content of this Course

Planning

Classical

Foundations

Logic

Heuristics

Constraints

Probabilistic

Explicit MDPs

Factored MDPs

State Variables Operators Planning Tasks Summary

State Variables

State Variables Operators Planning Tasks Summary

State Variables

How to specify huge transition systems
without enumerating the states?

represent different aspects of the world
in terms of different state variables (Boolean or finite domain)

individual state variables induce atomic propositions
 a state is a valuation of state variables

n Boolean state variables induce 2n states
 exponentially more compact than “flat” representations

Example: O(n2) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks

State Variables Operators Planning Tasks Summary

Blocks World State with Propositional Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

A
B

C

Note: it may be useful to add auxiliary state variables like A-clear.

State Variables Operators Planning Tasks Summary

Blocks World State with Finite-Domain Variables

Example

Use three finite-domain state variables:

below-a: {b, c, table}
below-b: {a, c, table}
below-c: {a, b, table}

s(below-a) = table

s(below-b) = a

s(below-c) = table

 33 = 27 states

A
B

C

Note: it may be useful to add auxiliary state variables like above-a.

State Variables Operators Planning Tasks Summary

Propositional State Variables

Definition (Propositional State Variable)

A propositional state variable is a symbol X.

Let V be a finite set of propositional state variables.

A state s over V is a valuation for V , i.e.,
a truth assignment s : V → {T,F}.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.

State Variables Operators Planning Tasks Summary

Propositional State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v ∈ V and d ∈ dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical valuations
where s |= v = d iff s(v) = d .

State Variables Operators Planning Tasks Summary

State Variables: Either/Or

State variables are the basis of compact descriptions
of transition systems.

For a given transition system, we will either use propositional
or finite-domain state variables. We will not mix them.

However, finite-domain variables can have any finite domain
including the domain {T,F}, so are in some sense a proper
generalization of propositional state variables.

State Variables Operators Planning Tasks Summary

From State Variables to Succinct Transition Systems

Problem:

How to succinctly represent transitions and goal states?

Idea: Use formulas to describe sets of states

states: all assignments to the state variables

goal states: defined by a formula

transitions: defined by operators (see following section)

State Variables Operators Planning Tasks Summary

Operators

State Variables Operators Planning Tasks Summary

Syntax of Operators

Definition (Operator)

An operator o over state variables V is an object
with three properties:

a precondition pre(o), a formula over V

an effect eff(o) over V , defined on the following slides

a cost cost(o) ∈ R+
0

Notes:

Operators are also called actions.

Operators are often written as triples 〈pre(o), eff(o), cost(o)〉.
This can be abbreviated to pairs 〈pre(o), eff(o)〉
when the cost of the operator is irrelevant.

State Variables Operators Planning Tasks Summary

Operators: Intuition

Intuition for operators o:

The operator precondition describes the set of states
in which a transition labeled with o can be taken.

The operator effect describes how taking such a transition
changes the state.

The operator cost describes the cost of taking a transition
labeled with o.

State Variables Operators Planning Tasks Summary

Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

If v ∈ V is a propositional state variable,
then v and ¬v are effects (atomic effect).

If v ∈ V is a finite-domain state variable and d ∈ dom(v),
then v := d is an effect (atomic effect).

If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.

If χ is a formula over V and e is an effect,
then (χ B e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

State Variables Operators Planning Tasks Summary

Effects: Intuition

Intuition for effects:

Atomic effects can be understood as assignments
that update the value of a state variable.

For propositional state variables, v means “v := T”
and ¬v means “v := F”.

A conjunctive effect e = (e1 ∧ · · · ∧ en) means that
all subeffects e1, . . . , en take place simultaneously.

A conditional effect e = (χ B e ′) means that subeffect e ′

takes place iff χ is true in the state where e takes place.

State Variables Operators Planning Tasks Summary

Semantics of Effects

Definition (Effect Condition for an Effect)

Let e be an atomic effect.
The effect condition effcond(e, e ′) under which e triggers
given the effect e ′ is a propositional formula defined as follows:

effcond(e, e) = >
effcond(e, e ′) = ⊥ for atomic effects e ′ 6= e

effcond(e, (e1∧ · · ·∧ en)) = effcond(e, e1)∨ · · ·∨ effcond(e, en)

effcond(e, (χ B e ′)) = χ ∧ effcond(e, e ′)

Intuition: effcond(e, e ′) represents the condition that must be true
in the current state for the effect e ′ to lead to the atomic effect e

State Variables Operators Planning Tasks Summary

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V , and let o be an operator over V .
Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e) ∧ ¬effcond(v , e)

s(v) if s 6|= effcond(v , e) ∨ effcond(¬v , e)

where e = eff(o).

State Variables Operators Planning Tasks Summary

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V , and let o be an operator over V .
Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e) ∧ ¬effcond(v , e)

s(v) if s 6|= effcond(v , e) ∨ effcond(¬v , e)

where e = eff(o).

State Variables Operators Planning Tasks Summary

Add-after-Delete Semantics

Note:

The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

This is called add-after-delete semantics.

This detail of semantics is somewhat arbitrary,
but has proven useful in applications.

For finite-domain variables, there are no distinguished values
like “true” and “false”, and a different semantics is used.

State Variables Operators Planning Tasks Summary

Conflicting Effects and Consistency Condition

What should an effect of the form v := a ∧ v := b mean?

For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The consistency condition for e, consist(e) is defined as∧
v∈V

∧
d ,d ′∈dom(v),d 6=d ′

¬(effcond(v := d , e) ∧ effcond(v := d ′, e)).

State Variables Operators Planning Tasks Summary

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables.
Let s be a state over V , and let o be an operator over V .
Operator o is applicable in s if s |= pre(o) ∧ consist(eff(o)).

If o is applicable in s, the resulting state of applying o in s,
written sJoK, is the state s ′ defined as follows for all v ∈ V :

s ′(v) =

{
d if s |= effcond(v := d , eff(o)) for some d ∈ dom(v)

s(v) otherwise

State Variables Operators Planning Tasks Summary

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(a, eff(o)) = effcond(a,¬a ∧ (¬c B ¬b))

= effcond(a,¬a) ∨ effcond(a,¬c B ¬b)

= ⊥ ∨ (¬c ∧ effcond(a,¬b))

= ⊥ ∨ (¬c ∧ ⊥)

≡ ⊥ false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

State Variables Operators Planning Tasks Summary

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(¬a, eff(o)) = effcond(¬a,¬a ∧ (¬c B ¬b))

= effcond(¬a,¬a) ∨ effcond(¬a,¬c B ¬b)

= > ∨ effcond(¬a,¬c B ¬b)

≡ > true in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

State Variables Operators Planning Tasks Summary

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(b, eff(o)) = effcond(b,¬a ∧ (¬c B ¬b))

= effcond(b,¬a) ∨ effcond(b,¬c B ¬b)

= ⊥ ∨ (¬c ∧ effcond(b,¬b))

= ⊥ ∨ (¬c ∧ ⊥)

≡ ⊥ false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

State Variables Operators Planning Tasks Summary

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(¬b, eff(o)) = effcond(¬b,¬a ∧ (¬c B ¬b))

= effcond(¬b,¬a) ∨ effcond(¬b,¬c B ¬b)

= ⊥ ∨ (¬c ∧ effcond(¬b,¬b))

= ⊥ ∨ (¬c ∧ >)

≡ ¬c false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

State Variables Operators Planning Tasks Summary

Applying Operators: Example

Example

Consider the operator o = 〈a,¬a ∧ (¬c B ¬b)〉
and the state s = {a 7→ T, b 7→ T, c 7→ T, d 7→ T}.

The operator o is applicable in s because s |= a.

Effect conditions of eff(o):

effcond(c , eff(o)) ≡ ⊥ false in state s

effcond(¬c , eff(o)) ≡ ⊥ false in state s

effcond(d , eff(o)) ≡ ⊥ false in state s

effcond(¬d , eff(o)) ≡ ⊥ false in state s

The resulting state of applying o in s is the state
{a 7→ F, b 7→ T, c 7→ T, d 7→ T}.

State Variables Operators Planning Tasks Summary

Example Operators: Blocks World

Example (Blocks World Operators)

To model blocks world operators conveniently,
we use auxiliary state variables A-clear, B-clear, and C-clear
to express that there is nothing on top of a given block.

Then blocks world operators can be modeled as:

〈A-clear ∧ A-on-table ∧ B-clear, A-on-B ∧ ¬A-on-table ∧ ¬B-clear〉
〈A-clear ∧ A-on-table ∧ C-clear, A-on-C ∧ ¬A-on-table ∧ ¬C-clear〉
〈A-clear ∧ A-on-B, A-on-table ∧ ¬A-on-B ∧ B-clear〉
〈A-clear ∧ A-on-C, A-on-table ∧ ¬A-on-C ∧ C-clear〉
〈A-clear ∧ A-on-B ∧ C-clear, A-on-C ∧ ¬A-on-B ∧ B-clear ∧ ¬C-clear〉
〈A-clear ∧ A-on-C ∧ B-clear, A-on-B ∧ ¬A-on-C ∧ C-clear ∧ ¬B-clear〉
. . .

State Variables Operators Planning Tasks Summary

Example Operator: 4-Bit Counter

Example (Incrementing a 4-Bit Counter)

Operator to increment a 4-bit number b3b2b1b0 represented
by 4 state variables b0, . . . , b3:

precondition:
¬b0 ∨ ¬b1 ∨ ¬b2 ∨ ¬b3

effect:

(¬b0B b0) ∧
((¬b1 ∧ b0)B (b1 ∧ ¬b0)) ∧

((¬b2 ∧ b1 ∧ b0)B (b2 ∧ ¬b1 ∧ ¬b0)) ∧
((¬b3 ∧ b2 ∧ b1 ∧ b0)B (b3 ∧ ¬b2 ∧ ¬b1 ∧ ¬b0))

State Variables Operators Planning Tasks Summary

Planning Tasks

State Variables Operators Planning Tasks Summary

Planning Tasks

Definition (Planning Task)

A planning task is a 4-tuple Π = 〈V , I ,O, γ〉 where

V is a finite set of state variables,

I is a valuation over V called the initial state,

O is a finite set of operators over V , and

γ is a formula over V called the goal.

V must either consist only of propositional
or only of finite-domain state variables.

In the first case, Π is called a propositional planning task,
otherwise an FDR planning task (finite-domain representation).

Note: Whenever we just say planning task (without
“propositional” or “FDR”), both kinds of tasks are allowed.

State Variables Operators Planning Tasks Summary

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)

The planning task Π = 〈V , I ,O, γ〉 induces
the transition system T (Π) = 〈S , L, c ,T , s0,S?〉, where

S is the set of all states over V ,

L is the set of operators O,

c(o) = cost(o) for all operators o ∈ O,

T = {〈s, o, s ′〉 | s ∈ S , o applicable in s, s ′ = sJoK},
s0 = I , and

S? = {s ∈ S | s |= γ}.

State Variables Operators Planning Tasks Summary

Planning Tasks: Terminology

Terminology for transitions systems is also applied
to the planning tasks Π that induce them.

For example, when we speak of the states of Π,
we mean the states of T (Π).

A sequence of operators that forms a solution of T (Π)
is called a plan of Π.

State Variables Operators Planning Tasks Summary

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)

Given: a planning task Π
Output: a plan for Π, or unsolvable if no plan for Π exists

Definition (Optimal Planning)

Given: a planning task Π
Output: a plan for Π with minimal cost among all plans for Π,

or unsolvable if no plan for Π exists

State Variables Operators Planning Tasks Summary

Summary

State Variables Operators Planning Tasks Summary

Summary

Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

They are based on concepts from propositional logic,
enhanced to model state change.

Planning tasks can be propositional or finite-domain.

States of planning tasks are assignments to its state variables.

Operators of propositional planning tasks describe
in which situations (precondition), how (effect) and
at which cost the state of the world can be changed.

In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

	State Variables
	

	Operators
	

	Planning Tasks
	

	Summary
	

