Planning and Optimization
A4. Planning Tasks

Malte Helmert and Gabriele Roger

Universitat Basel

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

1/35

Planning and Optimization
— A4. Planning Tasks

A4.1 State Variables
A4.2 Operators
A4.3 Planning Tasks

A4.4 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

2 /35

Content of this Course

—I Logic |

—| Heuristics |

—I Constraints |

Explicit MDPs |

Probabilistic

Factored MDPs |

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

3/35

A4. Planning Tasks

A4.1 State Variables

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

State Variables

4/ 35

A4. Planning Tasks State Variables

State Variables

How to specify huge transition systems
without enumerating the states?

> represent different aspects of the world
in terms of different state variables (Boolean or finite domain)

» individual state variables induce atomic propositions
~> a state is a valuation of state variables

» n Boolean state variables induce 2" states
~» exponentially more compact than “flat” representations

Example: O(n?) Boolean variables or O(n) finite-domain variables
with domain size O(n) suffice for blocks world with n blocks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

A4. Planning Tasks State Variables

Blocks World State with Propositional Variables

Example

s(A-on-B)
s(A-on-C)
s(A-on-table

—F
—F

s(C-on-table) = T

Note: it may be useful to add auxiliary state variables like A-clear.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

A4. Planning Tasks State Variables

Blocks World State with Finite-Domain Variables

Example
Use three finite-domain state variables:

» below-a: {b,c,table}
» below-b: {a,c,table}
» below-c: {a,b,table}

s(below-a) = table
s(below-b) = a

s(below-c) = table
~~ 3% = 27 states

Note: it may be useful to add auxiliary state variables like above-a.

A4. Planning Tasks State Variables

Propositional State Variables

Definition (Propositional State Variable)
A propositional state variable is a symbol X.

Let V be a finite set of propositional state variables.

A state s over V is a valuation for V, i.e.,
a truth assignment s : V — {T,F}.

A formula over V is a propositional logic formula using V
as the set of atomic propositions.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 8 / 35

A4. Planning Tasks State Variables

Propositional State Variables

Definition (Finite-Domain State Variable)
A finite-domain state variable is a symbol v with an associated
domain dom(v), which is a finite non-empty set of values.

Let V be a finite set of finite-domain state variables.

A state s over V is an assignment s : V — (J, .\, dom(v)
such that s(v) € dom(v) for all v € V.

A formula over V is a propositional logic formula whose atomic
propositions are of the form v = d where v € V and d € dom(v).

Slightly extending propositional logic, we treat states s
over finite-domain variables as logical valuations
where s = v = d iff s(v) = d.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 9 /35

A4. Planning Tasks State Variables

State Variables: Either/Or

> State variables are the basis of compact descriptions
of transition systems.

» For a given transition system, we will either use propositional
or finite-domain state variables. We will not mix them.

» However, finite-domain variables can have any finite domain
including the domain {T,F}, so are in some sense a proper
generalization of propositional state variables.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 10 / 35

A4. Planning Tasks State Variables

From State Variables to Succinct Transition Systems

Problem:

» How to succinctly represent transitions and goal states?

Idea: Use formulas to describe sets of states
P states: all assignments to the state variables
» goal states: defined by a formula
> transitions: defined by operators (see following section)

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 11 /35

A4. Planning Tasks Operators

A4.2 Operators

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 12 / 35

A4. Planning Tasks Operators

Syntax of Operators

Definition (Operator)
An operator o over state variables V is an object
with three properties:

» a precondition pre(o), a formula over V
> an effect eff0) over V, defined on the following slides

> a cost cost(o) € Ry

Notes:
» Operators are also called actions.
> Operators are often written as triples (pre(o), eff 0), cost(0)).

» This can be abbreviated to pairs (pre(o), eff 0))
when the cost of the operator is irrelevant.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 13 / 35

A4. Planning Tasks

Operators: Intuition

Intuition for operators o:
> The operator precondition describes the set of states
in which a transition labeled with o can be taken.
» The operator effect describes how taking such a transition
changes the state.
» The operator cost describes the cost of taking a transition
labeled with o.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Operators

14 / 35

A4. Planning Tasks Operators

Syntax of Effects

Definition (Effect)
Effects over state variables V are inductively defined as follows:

> If v € V is a propositional state variable,
then v and —v are effects (atomic effect).

» If v € V is a finite-domain state variable and d € dom(v),
then v := d is an effect (atomic effect).

> If er,...,e, are effects, then (e; A -+ Ae,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.

> If x is a formula over V and e is an effect,
then (x > e) is an effect (conditional effect).

Parentheses can be omitted when this does not cause ambiguity.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 15 / 35

A4. Planning Tasks

Effects: Intuition

Intuition for effects:
» Atomic effects can be understood as assignments
that update the value of a state variable.
» For propositional state variables, v means “v :=T"
and —v means v :=F".
» A conjunctive effect e = (e; A -+ A e,) means that
all subeffects ey, ..., e, take place simultaneously.
> A conditional effect e = (x > €’) means that subeffect €’
takes place iff x is true in the state where e takes place.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Operators

16 / 35

A4. Planning Tasks Operators

Semantics of Effects

Definition (Effect Condition for an Effect)

Let e be an atomic effect.

The effect condition effcond(e, €') under which e triggers
given the effect €’ is a propositional formula defined as follows:

> effcond(e,e) =T

> effcond(e,e’) = L for atomic effects e’ # e

> effcond(e, (e1 N\---Ney)) = effcond(e, er) V- - -V effcond(e, ep)
> effcond(e, (x > €')) = x A effcond(e, €)

Intuition: effcond(e, ') represents the condition that must be true
in the current state for the effect €’ to lead to the atomic effect e

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 17 / 35

A4. Planning Tasks

Semantics of Operators: Propositional Case

Definition (Applicable, Resulting State)

Let V be a set of propositional state variables.
Let s be a state over V/, and let o be an operator over V.
Operator o is applicable in s if s |= pre(o).

If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s’ defined as follows for all v € V:

T if s |= effcond(v, e)
F if s |= effcond(—v, e) A —effcond(v, e)
s(v) if s [~ effcond(v, e) \ effcond(—v, e)

s'(v) =

where e = eff{0).

Operators

A4. Planning Tasks Operators

Add-after-Delete Semantics

Note:

» The definition implies that if a variable is simultaneously
“added” (set to T) and “deleted” (set to F),
the value T takes precedence.

» This is called add-after-delete semantics.

» This detail of semantics is somewhat arbitrary,
but has proven useful in applications.

» For finite-domain variables, there are no distinguished values
like “true” and “false”, and a different semantics is used.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 19 / 35

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 18 / 35
A4. Planning Tasks Operators
Conflicting Effects and Consistency Condition
» What should an effect of the form v:=a A v:=b mean?
» For finite-domain representations, the accepted semantics
is to make this illegal, i.e., to make an operator inapplicable
if it would lead to conflicting effects.
Definition (Consistency Condition)
Let e be an effect over finite-domain state variables V.
The consistency condition for e, consist(e) is defined as
/\ /\ —(effcond(v := d, e) A effcond(v := d', e)).
veV d,d’edom(v),d#d’
M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 20 / 35

A4. Planning Tasks Operators

Semantics of Operators: Finite-Domain Case

Definition (Applicable, Resulting State)

Let V be a set of finite-domain state variables.

Let s be a state over V/, and let o be an operator over V.
Operator o is applicable in s if s = pre(o) A consist(ef{ 0)).
If o is applicable in s, the resulting state of applying o in s,
written s[o], is the state s’ defined as follows for all v € V:

() d if s |= effcond(v := d, eff0)) for some d € dom(v)
V)=
s(v) otherwise

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 21 / 35

A4. Planning Tasks

Applying Operators: Example

Example
Consider the operator o = (a,—a A (—c > —b))
and thestate s={a—~ T,b— T,c— T,d— T}

The operator o is applicable in s because s = a.
Effect conditions of eff0):
effcond(a, eff 0)) = effcond(a, —~a A (—c > —b))
= effcond(a, —a) V effcond(a, —~c > —b)
= 1 V (—c A effcond(a, =b))
=1V(-cAl)
=1 ~v falsein state s

Operators

A4. Planning Tasks Operators

Applying Operators: Example

Example
Consider the operator o = (a, ~a A (—c > b))
and thestates={a—~ T,b—T,c—T,d— T}

The operator o is applicable in s because s = a.
Effect conditions of eff0):

effcond(—a, eff0)) = effcond(—a, —a A (—c > —b))
= effcond(—a, ~a) V effcond(—a, ~c > —b)
= T V effcond(—a, —~c > —b)
=T ~v truein states

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 23 / 35

M. Helmert, G. Riger (Universitit Basel) Planning and Optimization 22/35
Ad. Planning Tasks Operators
Applying Operators: Example
Example
Consider the operator o = (a, ~a A (—c > b))
and thestates={a—~ T,b—T,c— T,d— T}
The operator o is applicable in s because s = a.
Effect conditions of eff0):
effcond(b, eff(0)) = effcond(b, —a A (—c > —b))
= effcond(b, —a) V effcond(b, —c > —b)
= 1 V (—c A effcond(b, —b))
=1V(-cAl)
=1 ~- falsein states
24 / 35

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

A4. Planning Tasks

Applying Operators: Example

Example
Consider the operator o = (a,—a A (—c > —b))
and thestate s={a—~ T,b—T,c— T,d— T}

The operator o is applicable in s because s = a.
Effect conditions of eff0):
effcond(—b, eff(0)) = effcond(—b,—a A (—c > —b))
= effcond(—b, —a) V effcond(—b, ~c > —b)
= 1 V (—c A effcond(—b, —b))
=1V(-cAT)
=-c ~» falsein state s

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Operators

25 / 35

A4. Planning Tasks

Applying Operators: Example

Example
Consider the operator o = (a,—a A (—c > —b))
and thestate s={a—~ T,b— T,c— T,d— T}

The operator o is applicable in s because s = a.
Effect conditions of eff0):

effcond(c, eff{o

effcond(—c, eff o

effcond(d, eff{ o
effcond(—d, eff o

false in state s

false in state s

I
-

~
>
~~ false in state s
o

false in state s

The resulting state of applying o in s is the state
{amF,b—>T,c—T,d— T}

Operators

A4. Planning Tasks

Example Operators: Blocks World

Example (Blocks World Operators)

To model blocks world operators conveniently,

we use auxiliary state variables A-clear, B-clear, and C-clear
to express that there is nothing on top of a given block.
Then blocks world operators can be modeled as:

» (A-clear A A-on-table \ B-clear, A-on-B A —A-on-table A —B-clear)
A-clear A\ A-on-table N\ C-clear, A-on-C A\ —A-on-table A —C-clear)
A-clear A\ A-on-B, A-on-table A —A-on-B A B-clear)

A-clear \ A-on-C, A-on-table A —=A-on-C A C-clear)
A-clear A\ A-on-B A C-clear, A-on-C A\ —A-on-B A B-clear A = C-clear)
A-clear A\ A-on-C A B-clear, A-on-B A\ =A-on-C A C-clear A =B-clear)

o~ o~ o~ o~~~

>
>
>
>
>
>

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

Operators

27 / 35

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 26 / 35
A4. Planning Tasks Operators
Example Operator: 4-Bit Counter

Example (Incrementing a 4-Bit Counter)

Operator to increment a 4-bit number b3by by by represented

by 4 state variables by, ..., bs3:

precondition:

—bg V —by V —by V b3
effect:
(mbo > bo) A
((ﬁbl VAN bo) > (bl AN ﬁbo)) A
((ﬂbg A b1 A bo) > (b2 A —=by A ﬂbo)) A
((—\b3 A by A\ by N\ bo) > (b3 A —by A —by A —|b0))

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 28 / 35

A4. Planning Tasks Planning Tasks

A4 .3 Planning Tasks

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 29 / 35

A4. Planning Tasks Planning Tasks

Planning Tasks

Definition (Planning Task)

A planning task is a 4-tuple N = (V, 1, O,) where
> V is a finite set of state variables,
P | is a valuation over V called the initial state,
» O is a finite set of operators over V, and
» ~ is a formula over V called the goal.

V must either consist only of propositional
or only of finite-domain state variables.

In the first case, [1 is called a propositional planning task,
otherwise an FDR planning task (finite-domain representation).

Note: Whenever we just say planning task (without
“propositional” or “FDR"), both kinds of tasks are allowed.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 30 /35

A4. Planning Tasks Planning Tasks

Mapping Planning Tasks to Transition Systems

Definition (Transition System Induced by a Planning Task)
The planning task M = (V,/, O,~) induces
the transition system 7 (1) = (S, L, c, T, sp, Sx), where

> S is the set of all states over V,
L is the set of operators O,
c(0) = cost(0o) for all operators o € O,

so=1, and

| 2
| 2
» T ={(s,0,5') |s€S, oapplicable in s, s’ = s[o]},
>
> S, ={seS|sEn~}

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 31 /35

A4. Planning Tasks Planning Tasks

Planning Tasks: Terminology

» Terminology for transitions systems is also applied
to the planning tasks [1 that induce them.

» For example, when we speak of the states of I1,
we mean the states of 7(I).

> A sequence of operators that forms a solution of 7(I1)
is called a plan of 1.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization 32 /35

A4. Planning Tasks Planning Tasks

Satisficing and Optimal Planning

By planning, we mean the following two algorithmic problems:

Definition (Satisficing Planning)
Given: a planning task I
Output: a plan for I, or unsolvable if no plan for I exists

Definition (Optimal Planning)

Given: a planning task [1
Output: a plan for 1 with minimal cost among all plans for I,
or unsolvable if no plan for I1 exists

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

33 /35

A4. Planning Tasks

A4.4 Summary

M. Helmert, G. Roger (Universitat Basel)

Planning and Optimization

Summary

34 /35

A4. Planning Tasks Summary

Summary

» Planning tasks compactly represent transition systems
and are suitable as inputs for planning algorithms.

» They are based on concepts from propositional logic,
enhanced to model state change.

» Planning tasks can be propositional or finite-domain.

v

States of planning tasks are assignments to its state variables.

» Operators of propositional planning tasks describe
in which situations (precondition), how (effect) and
at which cost the state of the world can be changed.

» In satisficing planning, we must find a solution
for a planning task (or show that no solution exists).

» In optimal planning, we must additionally guarantee
that generated solutions are of minimal cost.

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

35 / 35

	State Variables
	

	Operators
	

	Planning Tasks
	

	Summary
	

