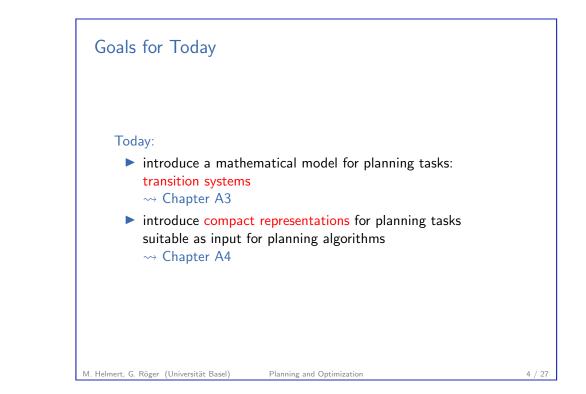


Planning and Optimization — A3. Transition Systems and Propositional Logic	
A3.1 Transition Systems	
A3.2 Example: Blocks World	
A3.3 Reminder: Propositional Logic	
A3.4 Summary	
M. Helmert, G. Röger (Universität Basel) Planning and Optimization	2 / 27



A3.1 Transition Systems

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

A3. Transition Systems and Propositional Logic

Transition Systems

5 / 27

Transition Systems

Definition (Transition System)

A transition system is a 6-tuple $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ where

- ► *S* is a finite set of states,
- ► *L* is a finite set of (transition) labels,
- ▶ $c: L \to \mathbb{R}_0^+$ is a label cost function,
- $T \subseteq S \times L \times S$ is the transition relation,
- $s_0 \in S$ is the initial state, and
- $S_{\star} \subseteq S$ is the set of goal states.

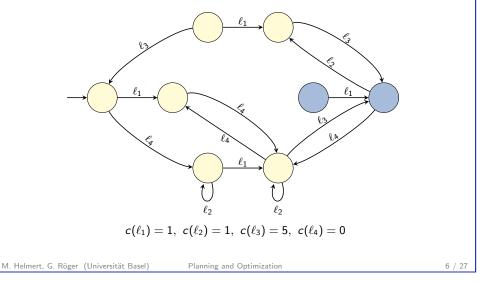
We say that \mathcal{T} has the transition $\langle s, \ell, s' \rangle$ if $\langle s, \ell, s' \rangle \in \mathcal{T}$.

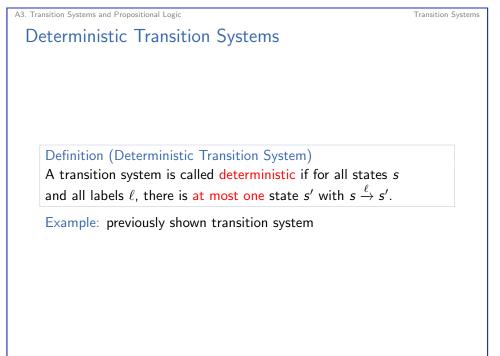
We also write this as $s \xrightarrow{\ell} s'$, or $s \rightarrow s'$ when not interested in ℓ .

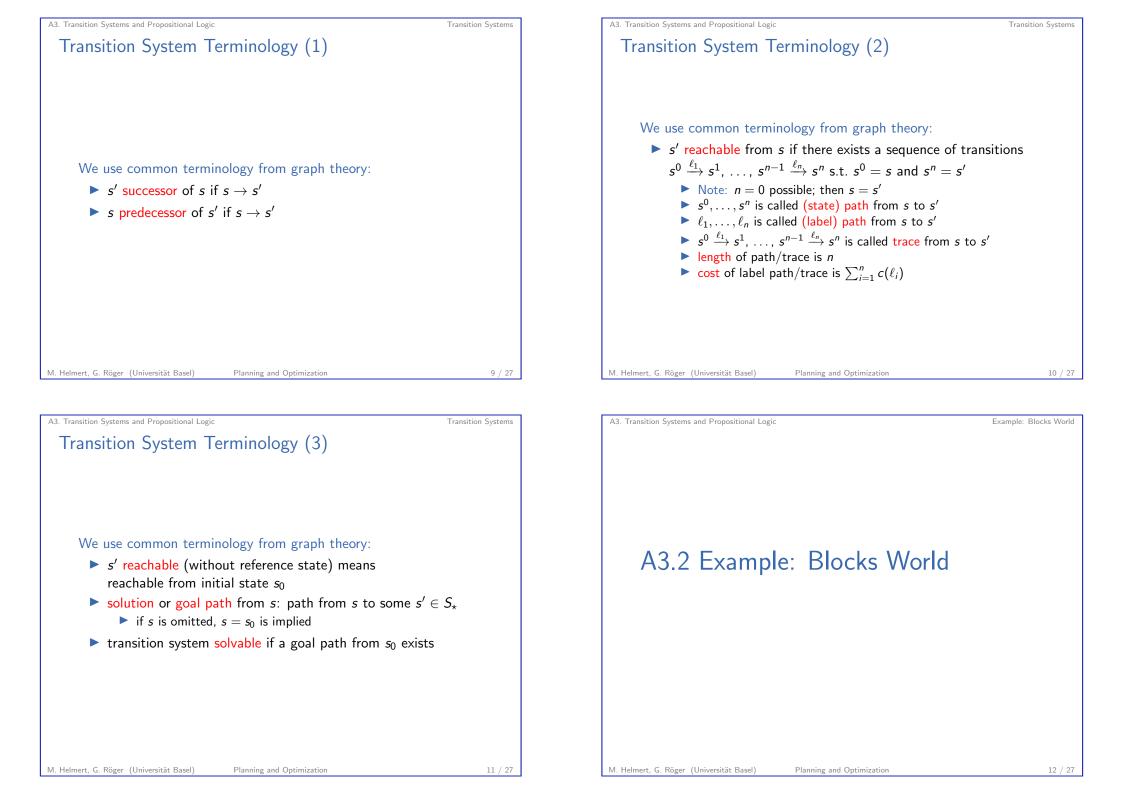
Note: Transition systems are also called state spaces.

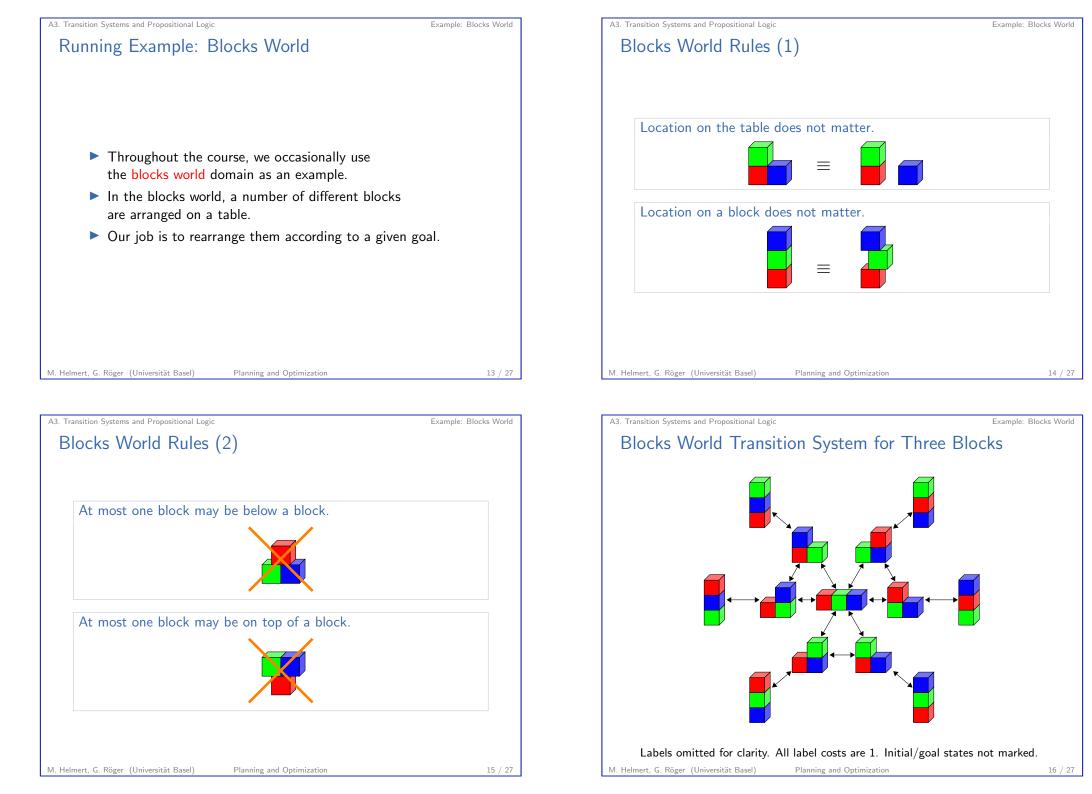
Transition System Example

Transition systems are often depicted as directed arc-labeled graphs with decorations to indicate the initial state and goal states.









A3. Transition Systems and Propositional Log	gic
--	-----

Blocks World Computational Properties

blocks	states	blocks	states
1	1	10	58941091
2	3	11	824073141
3	13	12	12470162233
4	73	13	202976401213
5	501	14	3535017524403
6	4051	15	65573803186921
7	37633	16	1290434218669921
8	394353	17	26846616451246353
9	4596553	18	588633468315403843

- Finding solutions is possible in linear time in the number of blocks: move everything onto the table, then construct the goal configuration.
- Finding a shortest solution is NP-complete given a compact description of the problem.

M. Helmert, G. Röger (Universität Basel) Planning and Optimization

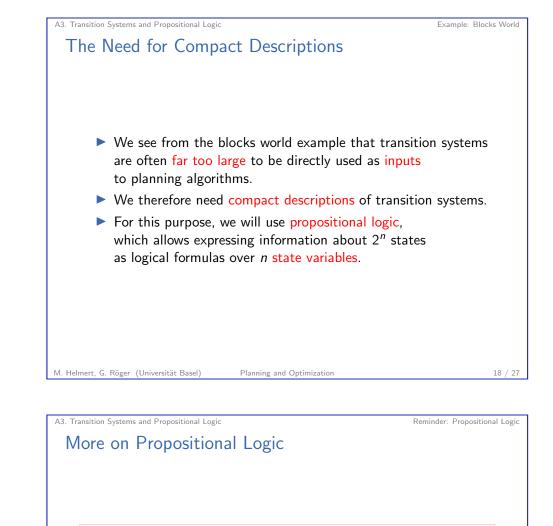
17 / 27

Example: Blocks World

A3. Transition Systems and Propositional Logic

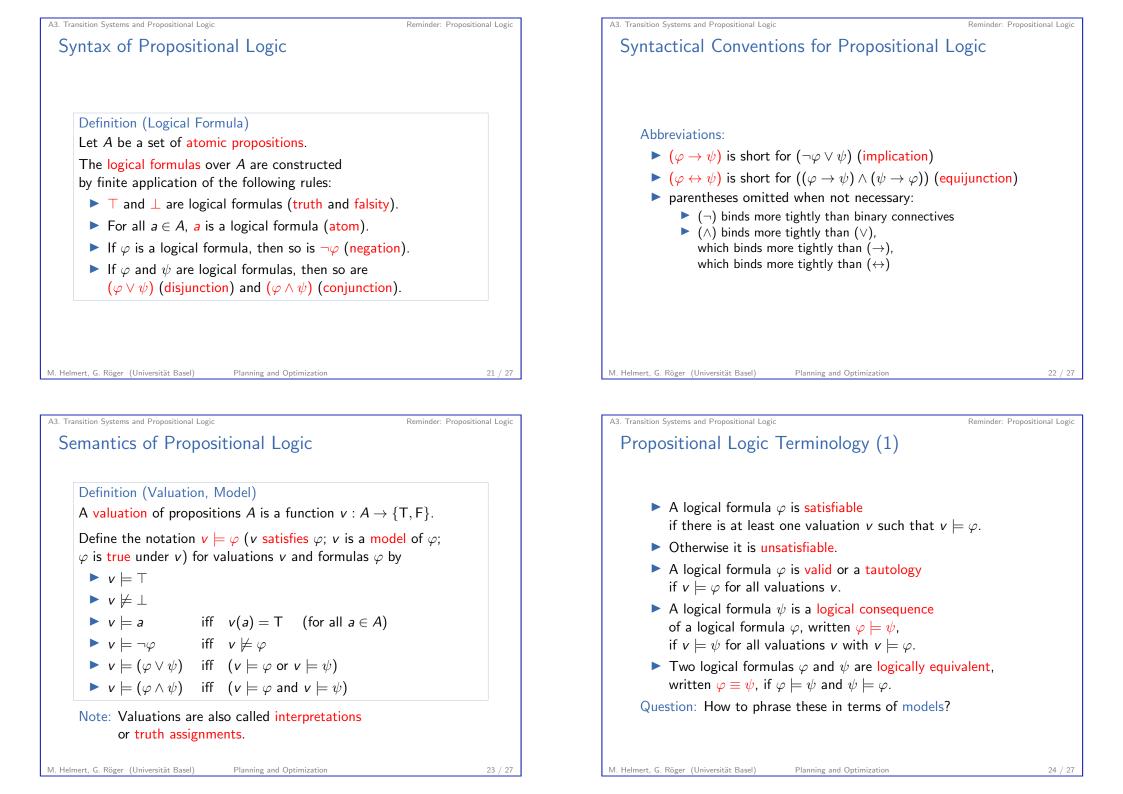
Reminder: Propositional Logic

A3.3 Reminder: Propositional Logic



Need to Catch Up?

- This section is a reminder. We assume you are already well familiar with propositional logic.
- If this is not the case, we recommend Chapters B1-B3 of the Theory of Computer Science course at https://dmi.unibas.ch/en/academics/ computer-science/courses-in-spring-semester-2020/ lecture-theory-of-computer-science/



Reminder: Propositional Logic

Propositional Logic Terminology (2)

- A logical formula that is a proposition *a* or a negated proposition ¬*a* for some atomic proposition *a* ∈ *A* is a literal.
- A formula that is a disjunction of literals is a clause. This includes unit clauses ℓ consisting of a single literal and the empty clause ⊥ consisting of zero literals.
- A formula that is a conjunction of literals is a monomial. This includes unit monomials ℓ consisting of a single literal and the empty monomial ⊤ consisting of zero literals.

Planning and Optimization

Normal forms:

- negation normal form (NNF)
- conjunctive normal form (CNF)
- disjunctive normal form (DNF)

M. Helmert, G. Röger (Universität Basel)

25 / 27

Summary

A3. Transition Systems and Propositional Logic

Summary

- Transition systems are (typically huge) directed graphs that encode how the state of the world can change.
- Propositional logic allows us to compactly describe complex information about large sets of valuations as logical formulas.

A3.	Transition	Systems	and	Propositional	Logic	

A3.4 Summary

M. Helmert, G. Röger (Universität Basel)

Planning and Optimization

Summarv

26 / 27