
Planning and Optimization A2. What is Planning?

Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course

Before We Start...

today: a very high-level introduction to planning

- our goal: give you a little feeling what planning is about
- preface to the actual course
- → main course content (beginning with Chapter A3)
 will be mathematically formal and rigorous
 - You can ignore this chapter when preparing for the exam.

Planning	
••••••••	

Task Examples 00000 How Hard is Planning

Summary 00

Planning

General Problem Solving

Wikipedia: General Problem Solver

General Problem Solver (GPS) was a computer program created in 1959 by Herbert Simon, J.C. Shaw, and Allen Newell intended to work as a universal problem solver machine.

Any formalized symbolic problem can be solved, in principle, by GPS. $[\ldots]$

GPS was the first computer program which separated its knowledge of problems (rules represented as input data) from its strategy of how to solve problems (a generic solver engine).

 \rightsquigarrow these days called "domain-independent automated planning" \rightsquigarrow this is what the course is about

Planning 00●0000000000		

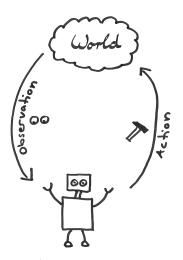
So What is Domain-Independent Automated Planning?

Automated Planning (Pithy Definition)

"Planning is the art and practice of thinking before acting." — Patrik Haslum

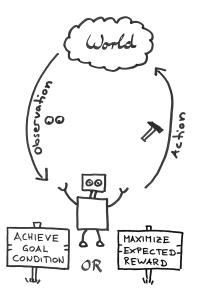
Automated Planning (More Technical Definition)

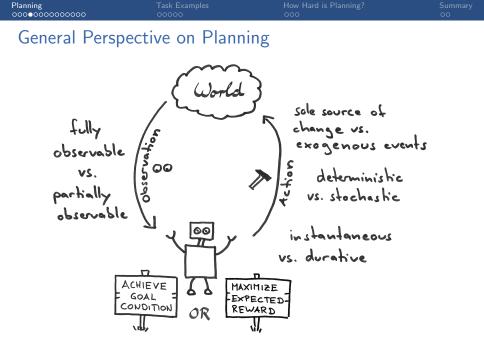
"Selecting a goal-leading course of action based on a high-level description of the world."


— Jörg Hoffmann

Domain-Independence of Automated Planning

Create one planning algorithm that performs sufficiently well on many application domains (including future ones).


Planning 0000000	000000			
6				


General Perspective on Planning

Planning 00000000	000000			
~				

General Perspective on Planning

 Task Examples

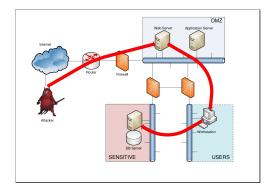
How Hard is Planning

Summary 00

Example: Earth Observation

- satellite takes images of patches on Earth
- use weather forecast to optimize probability of high-quality images

Planning	How Hard is Planning?	
0000000000000		


Example: Termes

Harvard TERMES robots, based on termites

Planning	How Hard is Planning?	
000000000000		

Example: Cybersecurity

CALDERA automated adversary emulation system

Task Examples

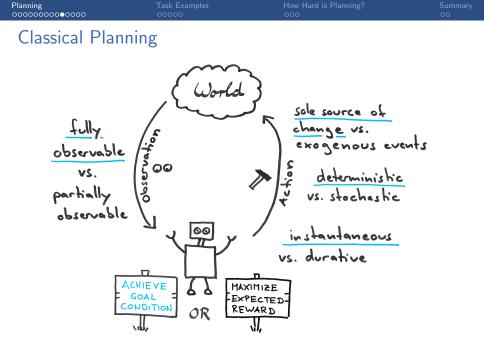
How Hard is Planning

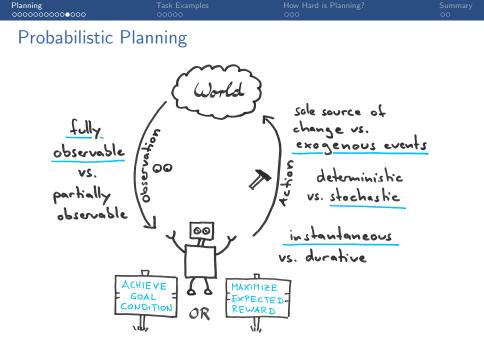
Summary 00

Example: Intelligent Greenhouse

photo ⓒ LemnaTec GmbH

Task Examples


How Hard is Planning


Example: Red-finned Blue-eye

Picture by ladine Chadès

- red-finned blue-eye population threatened by gambusia
- springs connected probabilistically during rain season
- find strategy to save red-finned blue-eye from extinction

Model-based vs. Data-driven Approaches

Model-based approaches know the "inner workings" of the world ~> reasoning

Data-driven approaches rely only on collected data from a black-box world → learning

We focus on model-based approaches.

Planning 00000000000000		

Planning Tasks

input to a planning algorithm: planning task

- initial state of the world
- actions that change the state
- goal to be achieved

output of a planning algorithm:

- plan (classical setting)
 - sequence of actions that takes initial state to a goal state
- policy (probabilistic setting)
 - function that returns for each state the action to take
- Why different concepts?

 \rightsquigarrow formal definitions later in the course

The Planning Research Landscape

- one of the major subfields of Artificial Intelligence (AI)
- represented at major AI conferences (IJCAI, AAAI, ECAI)
- annual specialized conference ICAPS (\approx 250 participants)
- major journals: general AI journals (AIJ, JAIR)

Planning

Task Examples ●0000 How Hard is Planning?

Planning Task Examples

Planning	Task Examples	How Hard is Planning?	Summary
0000000000000000000000000000000000	0●000	000	00
Example:	The Seven Bridges	of Königsberg	

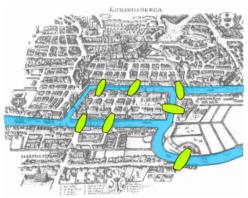


image credits: Bogdan Giușcă (public domain)

Demo

\$ ls demo/koenigsberg

Task Examples 00●00 How Hard is Planning

Summary 00

Example: Intelligent Greenhouse

photo ⓒ LemnaTec GmbH

Demo

\$ ls demo/ipc/scanalyzer-08-strips

Planning 0000000000000	Task Examples 000●0	

Example: FreeCell

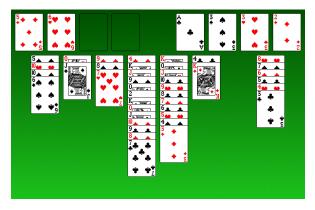


image credits: GNOME Project (GNU General Public License)

Demo Material

\$ ls demo/ipc/freecell

Planning 0000000000000	Task Examples 0000●	

Many More Examples

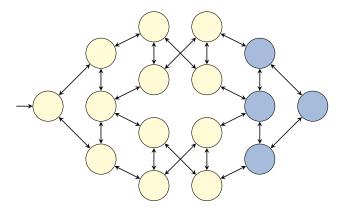
Demo

```
$ ls demo/ipc
agricola-opt18-strips
agricola-sat18-strips
airport
airport-adl
assembly
barman-mco14-strips
barman-opt11-strips
barman-opt14-strips
```

 \rightsquigarrow (most) benchmarks of planning competitions IPC 1998–2018

Planning	

Task Examples 00000 How Hard is Planning? •00


Summary 00

How Hard is Planning?

Planning 0000000000000	How Hard is Planning? ○●○	

Classical Planning as State-Space Search

classical planning as state-space search:

 \rightsquigarrow much more on this later in the course

Planning	How Hard is Planning?	Summary
0000000000000	00●	00

Is Planning Difficult?

Classical planning is computationally challenging:

- number of states grows exponentially with description size when using (propositional) logic-based representations
- provably hard (PSPACE-complete)
- \rightsquigarrow we prove this later in the course

Problem sizes:

- Seven Bridges of Königsberg: 64 reachable states
- Rubik's Cube: 4.325 · 10¹⁹ reachable states → consider 2 billion/second → 1 billion years
- standard benchmarks: some with $> 10^{200}$ reachable states

Planning	

Task Examples

How Hard is Planning

Summary ●0

Summary

	Summary
	00

Summary

- planning = thinking before acting
- major subarea of Artificial Intelligence
- domain-independent planning = general problem solving
- classical planning = the "easy case" (deterministic, fully observable etc.)
- still hard enough!

 \rightsquigarrow PSPACE-complete because of huge number of states

probabilistic planning considers stochastic action outcomes and exogenous events.