

# Planning and Optimization

## A1. Organizational Matters

Malte Helmert and Gabriele Röger

Universität Basel

# Organizational Matters

# People: Lecturers



Malte Helmert



Gabriele Röger

## Lecturers

### Malte Helmert

- **email:** [malte.helmert@unibas.ch](mailto:malte.helmert@unibas.ch)
- **office:** room 06.004, Spiegelgasse 1

### Gabriele Röger

- **email:** [gabriele.roeger@unibas.ch](mailto:gabriele.roeger@unibas.ch)
- **office:** room 04.005, Spiegelgasse 1

# People: Assistants



Clemens Büchner



Thomas Keller



Silvan Sievers

## Assistants

### Clemens Büchner

- **email:** [clemens.buechner@unibas.ch](mailto:clemens.buechner@unibas.ch)
- **office:** room 04.001, Spiegelgasse 5

### Thomas Keller

- **email:** [tho.keller@unibas.ch](mailto:tho.keller@unibas.ch)
- **office:** room 04.005, Spiegelgasse 1

### Silvan Sievers

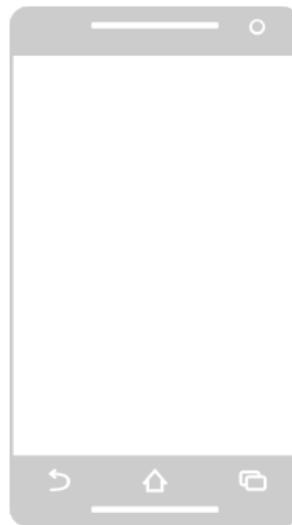
- **email:** [silvan.sievers@unibas.ch](mailto:silvan.sievers@unibas.ch)
- **office:** room 04.005, Spiegelgasse 1

## Target Audience

target audience:

- M.Sc. Computer Science
  - Major in Machine Intelligence:  
module **Concepts of Machine Intelligence**
  - Major in Distributed Systems:  
module **Applications of Distributed Systems**
- M.A. Computer Science (“Master-Studienfach”)  
module **Concepts of Machine Intelligence**
- other students welcome

# Prerequisites


prerequisites:

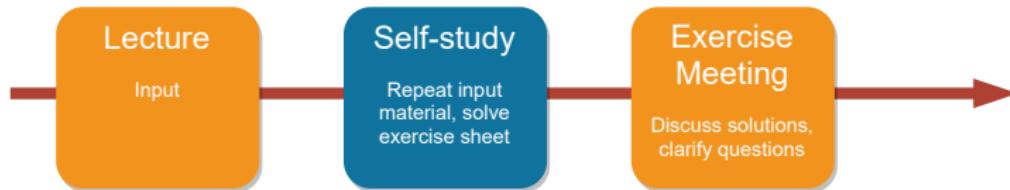
- general computer science background: good knowledge of
  - algorithms and data structures
  - complexity theory
  - mathematical logic
  - programming
- background in Artificial Intelligence:
  - Foundations of Artificial Intelligence course (13548)
  - in particular chapters on state-space search

Gaps?

~~ talk to us to discuss a self-study plan to catch up

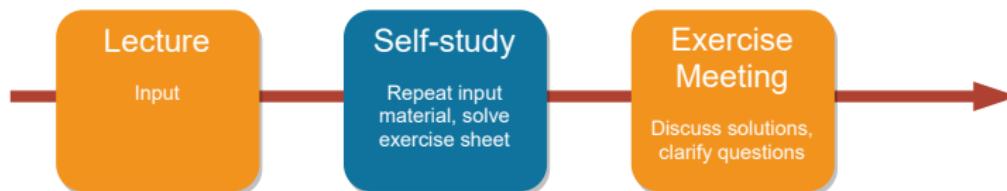
# We use Slido




Join at [slido.com](https://slido.com)

# Enrolment

- <https://services.unibas.ch/>
- **deadline:** October 18
- better today, so that you get all relevant emails and access to the ADAM workspace


# Flipped Classroom

Usual lecture week (we don't do this):



# Flipped Classroom

Usual lecture week (we don't do this):



Flipped classroom:



# Planning and Optimization Course on ADAM

## ADAM

<https://adam.unibas.ch/>

- learning modules
- submission of exercise sheets
- model solutions for exercise sheets
- forum for announcements and questions  
(followed by lecturers and assistants)
- link to Discord server (for interaction among participants,  
but you also get answers from lecturers, assistant and tutors)

# Plenary Meetings

- Wednesday 14:15 on Zoom
- with the lecturers
- bring your questions from the self-study phase
- on December 22: **Q&A session for exam preparation**

# Exercise Sheets

exercise sheets (homework assignments):

- solved in groups of **3 students** (note:  $2 \neq 3 \neq 4$ ), submitted via ADAM
- project-oriented assignments
  - each exercise sheet covers one part of the lecture (typically 1.5–2 weeks = 6–8 chapters)
  - substantial in scope  $\rightsquigarrow$  **don't start too late**
  - handed out at beginning of each part
  - work on these while we cover this part in the lecture
  - due Thursday after the end of the part (= the last plenary meeting on the part)
  - scope and marks proportional to covered topics
- mixture of theory, programming and experiments
- research aspects  $\rightsquigarrow$  be independent, but ask questions!

# Programming Exercises

programming exercises:

- part of regular assignments
- solutions that obviously do not work: 0 marks
- work with existing C++ and Python code

# Exercise Sessions

## Exercise Sessions (starting September 27)

Monday: 14:15–16:00

- group 1: Seminar room 00.003, Spiegelgasse 1
- group 2: on Zoom

# Exercise Sessions

## Exercise Sessions (starting September 27)

Monday: 14:15–16:00

- group 1: Seminar room 00.003, Spiegelgasse 1
- group 2: on Zoom

exercise sessions:

- discuss past homework assignments
- ask questions about current assignments (and course)
- **work on homework assignments**

# Exercise Sessions

## Exercise Sessions (starting September 27)

Monday: 14:15–16:00

- group 1: Seminar room 00.003, Spiegelgasse 1
- group 2: on Zoom

exercise sessions:

- discuss past homework assignments
- ask questions about current assignments (and course)
- **work on homework assignments**

→ slido for first impression of preferences

# Exam

- **written examination** (105 min)
- Wednesday, 26 January 2022, 14:00-16:00 (TBC)
- 8 ECTS credits
- admission to exam: 50% of the exercise marks
- final grade based on exam exclusively
- **no repeat exam**

## Required Time

- 1 CP  $\approx$  30 hours
- The course has 8 CP.
- You need to invest about 240 hours.
- With 50 hours for exam preparation,  
this leaves 14–15 hours/week during the teaching period.

## Required Time

How to distribute the 14–15 hours/week? – an example

- 6 hours self-study
- 2 hours exercises on Monday
- 2 hours plenum on Wednesday
- 4 hours additional time for homework

# Plagiarism

## Plagiarism (Wikipedia)

*Plagiarism is the “wrongful appropriation” and “stealing and publication” of another author’s “language, thoughts, ideas, or expressions” and the representation of them as one’s own original work.*

### consequences:

- 0 marks for the exercise sheet (first time)
- exclusion from exam (second time)

if in doubt: check with us what is (and isn't) OK **before submitting exercises too difficult?** we are happy to help!

# Course Content

# Learning Objectives

## Learning Objectives

- get to know theoretical and algorithmic foundations of classical & probabilistic planning and work on practical implementations
- understand fundamental concepts underlying modern planning algorithms and theoretical relationships that connect them
- become equipped to understand research papers and conduct projects in this area

# Course Material

course material:

- slides (online)
- no textbook
- additional material **on request**

# Virtual Machine

- programming exercises:  
we provide a Vagrant virtual machine running Linux
  - setup: follow instructions in `virtual-machine-setup.pdf` linked on the course homepage under “Exercises”
  - you can do your own native setup instead (but no support!)
- we provide a Git repository with code to work with
  - this includes all demos used in the course

# Your Next Steps

- until Sep. 26: solve exercise sheet Z
  - form a team for the exercises
  - get acquainted with the course infrastructure
  - set up the virtual machine
- until Sep. 26: watch recordings for A1 and A2  
(if you were not in the live meeting)
- Sep. 27: exercise meeting with introduction to PDDL
- Sep. 29: plenary session
- until Oct. 3: study learning module on parts A3 and A4

# Under Construction...



- Advanced courses are close to the frontiers of research and therefore constantly change.
- We are always happy about feedback, corrections and suggestions!