Flexible Abstraction Heuristics for Optimal Sequential Planning

Malte Helmert

Institut fUr Informatik
Georges-Kohler-Allee 52
79110 Freiburg, Germany

helmert@informatik.uni-freiburg.de

Abstract

We describe an approach to deriving consistent heurisiics f
automated planning, based on explicit search in abstraiet st
spaces. The key to managing complexity is interleaving com-
position of abstractions over different sets of state \wes
with abstraction of the partial composites.

The approach is very general and can be instantiated in many
different ways by following differentibstraction strategies

In particular, the technique subsumganning with pattern
databasess a special case. Moreover, with suitable abstrac-
tion strategies it is possible to derive perfect heurisiica
number of classical benchmark domains, thus allowing their
optimal solution in polynomial time.

To evaluate the practical usefulness of the approach, we per
form empirical experiments with one particular abstrattio
strategy. Our results show that the approach is competitive
with the state of the art.

Introduction

In contrast to tremendous improvements in the scaling be-
haviour of satisficing planners (as evidenced by the results
of recent planning competitions) and planning systems that
minimize so-called “parallel length” (Kautz, Selman, &
Hoffmann 2006), the problem afptimal sequential plan-
ning, i. e. finding a plan with a minimal number of actions,
remains very challenging.

The only known approach to optimal planning that is gen-
erally viable is search, in one form or another. The most
important general method for improving the efficiency of
search for optimal solutions is the useaafmissible heuris-
tics, i. e. lower bound functions on the distance to the nearest

Patrik Haslum*

Albert-Ludwigs-Universitat FreiburgNICTA & Australian National University
Locked Bag 8001

Canberra ACT 2601, Australia

Patrik.Haslum@nicta.com.au

Jorg Hoffmann
DERI
University of Innsbruck
TechnikerstraBe 21a
6020 Innsbruck, Austria
joerg.hoffmann@deri.at

Vidal & Geffner 2006). These improvements, however, are
not enough to replace heuristics as a corner-stone of opti-
mal planning. Moreover, improvements to heuristics and to
other aspects of search complement each other.

A useful heuristic function must be efficiently computable
(at most low order polynomial time) as well as accurate. Im-
proving the accuracy of a heuristic function, without wors-
ening its computational properties, usually translates di
rectly into faster search for optimal solutions. This is-pre
cisely the contribution of this paper. We describe a way
of deriving more accurate admissible heuristics for fodvar
search, at a reasonable computational cost.

Our heuristics areabstraction heuristics meaning the
heuristic value is the optimal cost of the solution to an ab-
straction of the planning task. An abstraction is a mapping
that reduces the size of the state space, by “collapsing” sev
eral states into one. By making the abstract space small
enough, it becomes feasible to find the optimal solution by
blind search. Distances in the abstract space are computed i
a preprocessing phase and stored in memory, so that heuris-
tic evaluation during search can be done by a simple lookup.

A particular form of abstraction heuristics, knowngzt-
tern database$PDBs) have been shown to be very useful
in several hard search problems, including optimal plagnin
(Culberson & Schaeffer 1998; Edelkamp 2001). The ab-
straction mappings underlying PDB heuristics for planning
areprojections which ignore completely all but a subset of
the state variables of the planning task (known as the “pat-
tern”): states that do not differ on the chosen variables are
identified in the abstract space. This limits the representa
tional power of PDB heuristics: in some planning tasks the

solution in the search space. There are of course numer- abstraction that would be most useful as a heuristic can not
ous other ways to enhance the efficiency of search proce- be represented as a PDB (of reasonable size). Heuristics
dures for optimal planning: Compacting the representation based on abstractions more general than projections have
of sets of states, using data structures such as BDDs, andbeen used in some applications, but so far not for planning
using external storage permits larger search spaces to-be ex (Hoffmann et al., 2006, consider a form of non-projection
plored (Edelkamp 2005). Clever branching strategies, for abstractions, but do not use them to derive heuristics).
example using a constraint representation, help focusisear Recently, Drager, Finkbeiner & Podelski (2006), in the
on the relevant choice points, thus reducing branching fac- context of verification of systems of concurrent automata,
tor and/or solution depth (Grandcolas & Pain-Barre 2007; presented a method to construct abstractions that combine
information about all state variables. The computatioeai f
sibility of this approach rests on interleaving compositio
with abstraction of the partial composites. The greatei-flex
bility offered by not restricting abstractions to be prdjens

*NICTA is funded through the Australian governmeitizcking
Australia’s abilityinitiative.
Copyright(© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is a mixed blessing. It does, as we show, allow very accurate Definition 2 Transition graphsand plans.
heuristics to be obtained from relatively small abstrattio Atransition graphis a5-tuple7 = (S, L, A, s¢, S.), where
However, the problem of selecting from the vast number of S is a finite set oftates, L is a finite set ofransition labels,
possible abstractions a good one, which is hard already for A C S x L x S is a set of (labelledransitions, so € S is
PDB heuristics, becomes even harder. A gabdtraction theinitial state, andS, C S is the set ofoal states.
strategyis vital for the approach to be practical. A path froms, to anys, € S, following the transitions

We generalize the method of Drager et al. to the problem of 7 is aplan for 7. A plan isoptimal iff the length of the
of optimal planning, using the SASrepresentation, and in- path is minimal.
vestigate various refinements of their abstraction styateg
particular, we show that good — in some domains even per-
fect — heuristics can be obtained using a simpler strategy
for the order of composition but a more refined strategy for
simplifying the intermediate abstractions. We also presen
the first evidence that, with an appropriate abstracticat-str
egy, this approach does in fact lead to better heuristias tha
using only projections, as done in PDBs. We prove that
the framework subsumes PDBs, including additive PDBs,
and that in certain domains, for which planning is known to
be tractable, it can construct and succinctly represent per
fect heuristics, i.e., heuristics that give exact estimate
goal distance for all reachable states. Experimentally, we
show that our abstraction strategy frequently results th be
ter heuristics than the currently best known method for au-
tomatically constructing PDB heuristics.

The next two section_s formally introdl_Jce planning prob- Abstractions
lems and their abstractions. We then discuss the computa- . .
tion of abstractions in general and the specific strategy we Abstractions of transition graphs are at the core of our ap-
use. Finally, we provide theoretical and experimental re- proach to constructing heuristics. Abstracting meansngno

sults, demonstrating the effectiveness of the approach. ing some information or some constraints to obtain a more
“coarse grained”, and typically smaller, version of thentra

Background e, T opan e Bt
We consider optimal planning in the classical setting, gisin as a way to define admissible heuristics. Formally, abstrac-
the SAS representation of planning tasks. A task speci- tion of transition graphs is defined as follows:
e o b eI 10 SASTIT e Definfion 3 Absracion
lon au ically (H £0008). IS PAPEr, We A apstraction of a transition graph7™ = (S, L, A, so, S,)

assume that the objective is to minimize plan length. We re- . : — PR Y AV =/ AN
mark that our methods generalize easily to the case of mini- =& pair A = (77, 0) where 7" = (5", L', A', s, 5,) IS

ina th ; 9 " ¥ y " a transition graph called thabstract transition graph and
mizing the sum of non-negative action costs. a: S — S is a function called thabstraction mapping,

We denote the transition graph associated with a Spian-
ning taskll by 7 (II). Its states are the states of the task, i. e.
complete assignments of values to variables, and the graph
has an edge, labelled bye O, fromsto s’ if o is applicable
in s and applying the operator toleads tos’. A solution to
the planning task is a path through this graph.

The transition graph aofl can also be viewed as the syn-
chronized product of transition graphs defined over vagisbl
in the planning task. With this in mind, the similarity with
the concurrent automata model used by Drager et al. is easy
to see. However, SAS operators allow for more general
forms of synchronization. Some care must be taken in defin-
ing the transition graphs of individual variables to ensure
that their product really is isomorphic ®(I1). Exactly how
this is done is described in the next section.

Definition 1 SAS™ planning task. suchthatl’ = L, (a(s),l, a(s")) € A" forall (s,1,s") € A,
A SAS* planning task or SAS™ task for short is a 4-tuple @(s0) = s, anda(s,) € S, forall s, € S,. N
I1 = (V,0, s, s,) with the following components: If the abstract transition graph contains no transitions or
, ,) goal states in addition to those required by the above defini-
e V={vi,...,v,} is aset oftate variables, each with an tion, A is called ahomomorphism.
associated finite domaiR,,. . .)
A partial variable assignment overV is a functions on Note that abstraction is transitive: (f”, «') is an abstrac-
some subset of such thats(v) € D, wherevers(v) is tion of a transition grapff, and(7", o) is an abstraction
defined. Ifs(v) is defined for alb € V, s is called astate. of 77, then(T"”, o o o) is also an abstraction qF.

When the abstraction mapping is not relevant, we iden-
f partial variabl . i I tify an abstraction with its abstract transition graph. Hi t
{pre, eff) of partial variable assignments callqufecon- case of homomorphisms, we may also identify an abstrac-

d|t|9ns andeffects, resp.e<?t|.vely. . . tion with its abstraction mapping, since the mapping com-
e 50 is a state called theénitial state, and s, is a partial pletely determines the abstract graph.

variable assignment called trgmal.

e O is a set ofoperators, where an operator is a pair

Definition 4 Abstraction heuristic.

The semantics of a planning task are given by mappingitto LetIl be a SAS task with state sef, and letA = (T, a)
atransition graph (Transition graphs are often called tran- be an abstraction of its transition graph.

sition systemswe call them graphs to emphasize their inter- The abstraction heuristic k1 is the function which as-
pretation as (labelled) digraphs.) Searching in this iteoms signs to each state € S the length of the shortest path, in
graph corresponds to forward state space search. T, froma(s) to any goal state of .

The value ofh”(s) is a lower bound on the length of the As we earlier hinted, the synchronized product of all
shortest path froms to any goal state iry (II). Thus, 4 atomic projections of a SAStaskII is equal to the full tran-
is an admissible and consistent heuristic for forward state sition graph7 (II). In other words, the atomic projections
space search. This s true of abstraction heuristicsinrggne are a complete representatiorifffrom which7 (IT) can be
not only abstractions of planning tasks. It follows from the reconstructed by synchronized product operations. To show
simple fact that abstractions preserve edges in the tiransit this, we first need to introduce the following concept of in-
graph: every path iff (I) is also a path in4, so the shortest dependence for abstractions.
path in the latter can not be longer than the shortest path in
the former. The converse is not necessarily true, as there
may be a shorter path to a goal statedrthan in7 (II), so
hA will typically underestimate the real solution length.

The above definition does not specify how, for a given
state, the value of is computed. In the general setting of

domain-independent planning, the only realistic possibil varse{.A), is the set of variables ity on which.A depends.

is by searching the transition graph of the abstraction. For AbstractionsA and A’ are orthogonal iff varse(.A) N
pattern database heuristics, an exhaustive search of bach a varset A’) = 0

straction is done as a preprocessing step, and goal distance o _ _
for all abstract states are stored in memory. We follow the Clearly, projections satisfyarsetmy) = V, so projec-
same approach. As mentioned in the introduction, the ab- tions onto disjoint variable sets are orthogonal. Morepver

Definition 7 Relevant variables, orthogonal abstractions.
LetII be a planning task with variable s&t, and let.A =
(T, «) be an abstraction of (I1).

We say thatd depends on variable v € V iff there exist
statess ands’ with a(s) # a(s’) ands(v’) = §'(v') for all
v' € V\ {v}. The set ofelevant variables for .4, written

straction heuristics previously considered in plannine, i varsefA ® A’) = varsef{A) U varsefA’).
PDBs, are based on a particular type of abstractions, namely Theorem 8 Products of orthogonal homomorphisms
projections. Formally, these are defined as follows. LetII be a SAS task, and let4 and A’ be orthogon.al ho-
Definition 5 Projection. momorphisms of (IT). ThenA® A’ is a homomorphism of
LetIl = (V, O, s0, s.) be a SAS task with state sef, and T(I).
letV C V be a subset of its variables. For space reasons, we omit the proof. We remark that the
A homomorphism off (IT) defined by a mapping such theorem doesothold if A and.A’ are not required to be or-
thata(s) = a(s') iff s(v) = §/(v) forall v € V is called a thogonal, and that it doet hold if the SAS™ task contains
projection onto variable seV/, written asmy, . conditional effects.
If V is a singleton setr,, is called amatomic projection, Itis now easy to prove that the transition graph of a $AS
also writtenr, . task is isomorphic to the synchronized product of the atomic
abstractions of all its variables, i. e. tHA{II) = @, 7.

The relationship between PDBs and our more general form

. e h By definition, the abstraction mapping of the product s a bi-
of abstraction heuristics is further discussed later on. y bping P

jection. By Theorem 8, the abstraction is a homomorphism.

_For readers familiar with the concept of themain tran- These two facts together imply the desired equivalence.
sition graph(DTG) of a SAS™ variable, we remark that the
transition graph of an atomic projection onto a variabie i i i
not identical to the DTG of. This is because the transition) A Gen_enc Abstraction _Algonthm
graph ofr, has edges representing the effecanjoperator Atomic projections an_q synchronl_zed products can fully
onv, including operators that have no effectan capture the state transition semantics of a SA&k. How-

The abstractions we base our heuristics on are constructed€ver. for all but trivial tasks we cannot explicitly compute
the product of all atomic projections: At some point, the ab-

by interleaving composition of abstractions with furthbr a oy
straction of the composites. Composing here means the stan-Stract transition graphs become too large to be represented

dard operation of forming the synchronized product, for- [N memory. In the case of PDB heuristics, the memory limit
mally defined as follows. translates into an effective limit on the number of variable

that can be included in any single projection.

Definition 6 Synchronized product. In contrast, the approach we pursue in this paper com-

Let A" = ((S",L, A, sp,55), ¢y and A" = ((S",L, A", putes abstractions based on fh# variable set. To do so,

sg, Sy, ") be abstractions of a transition graph. we maintain a pool of (orthogonal) abstractions, which ini-
The synchronized product of A’ and A" is defined as tially consists of all atomic projections. We then repebted

A @ A" = ((S,L, A, s, S4),a), whereS = S’ x S”, perform one of two possible operations until only a single

((s',8"),1, (', t")) € Aiff (s',1,¢') € A" and(s",1,t") € abstraction remains:

A", 50 = (sp,50), S = 5, x S anda : § — Sisdefined o Two abstractions can bmerged(i.e., composed) by re-

by a(s) = (o/(s), " (s)). placing them with their synchronized product.

The synchronized product of two abstractions of a transitio LThe latter is a consequence of how we have defined the tran-

graph7 is again an abstraction 6f. This is an immedi- gjtion graph of a SAS task, in particular the fact that edges are
ate consequence of the definitions. Forming the product is |abelled only by operator names. In a task with conditioffiaioss,
an associative and commutative operation, modulo isomor- transition labels must be extended with information abohictv

phism of transition graphs. effects are active in the transition.

generic algorithm compute-abstractiohl, V): tains a single non-atomic abstraction called ¢toerent ab-
abs:= {m, | vis a variable oflI} straction Initially, the current abstraction is an atomic pro-
while |abg > 1: jection. In each iteration, the current abstraction is radrg
SelectA,, A, € abs with an atomic projection to form the new current abstrac-
ShrinkA; and/orA; until sizg.A;)-sizg A;) < N. tion, until all atomic projections have been considered. At
abs:= (abs\ {A;, A2}) U{A; ® Az} any point throughout the merging process, there is thus only
return the only element oébs one abstraction which is not an atomic projection, and a set
of atomic projections which still need to be merged into it.
Figure 1: Algorithm for computing an abstraction for plan- Drager et al. use a non-linear merging strategy, but one
ning taskll, with abstraction size bound. (The size of an that still has the property that each atomic abstraction is
abstraction is the number of abstract states.) considered only once. A linear strategy is simpler and, we

believe, achieves equally good results. In particular,an d
mains for which we prove the existence of a strategy yield-
e An abstraction can bshrunk(i.e., abstracted) by replac- ing a perfect heuristic, linear strategies suffice.
ing it with a homomorphism of itself. A linear strategy is defined by the order in which atomic
To keep time and space requirements under control, we en- Projections are merged into the current abstraction. We de-
force a limit on the size of the computed abstractions, spec- €rmine this order by following two simple rules:
ified as an input paramete¥. Each computed abstraction, 1. If possible, choose a variable from which there is an arcin
including the final result, contains at madststates. If there the causal graph to one of the previously added variables.
are more thanV states in the product of two abstractions
A; andA; (i. e., if the product of their state counts exceeds
N), either or both of the abstractions must be shrunk by a
sufficient amount before they are merged. The general pro-
cedure is shown in Fig. 1. Note that the procedure has two Both rules are fairly intuitive: Goal variables are clearty
important choice points: portant because they are the only ones for whichas non-
e merging strategythe decision which abstractiony and zero goal distgnce, ar_ld causally conne_cte_d var_iables are th
As to select from the current pool of abstractions. only ones Whlch_ can increase the h_eunstlc estimates of the
o o) i current abstraction. (We also experimented with the oppo-
e shrinking strategy the decision which abstractions to sjte order of rules, i. e. first adding all goal variables aveht
shrink and how to shrink them, i. e. which homomorphism causally connected variables, with slightly worse results

2. If there is no such variable, add a variable for which a
goal value is defined. (In particular, choose a goal variable
initially, when there are no previously added variables.)

to apply to them. When neither rule applies, there are no variables left
We refer to the combination of a particular merging and that either have defined goal values or are relevant for the
shrinking strategy as aabstraction strategy To obtain a ~ achievement of a goal. In other words, only irrelevant vari-
concrete algorithm, we must augment ti@neric abstrac- ables are left, and the remaining variables can be ignored. |
tion algorithmin Fig. 1 with an abstraction strategy. our case, this situation does not arise because the PDDL-to-

Assuming thatV is polynomially bounded by the input SAS" translator removes irrelevant variables.
size (e.g., a constant) and that the abstraction strategy is _In many situations, the two rules are not sufficient for de-
efficiently computable, computing the abstraction require Ciding which variable to add next, because there are several
only polynomial time and space. As argued previously, the matching candidates. In this case, we choose the candidate
resulting abstraction heuristic is admissible and coestst with the “highest level” according to the ordering critetio
Even though these important properties hold indepen- used by Fast Downward (Helmert 2006a).
dently of the choice of abstraction strategy, selectingit su o
able strategy is of paramount importance, as it determines Shrinking Strategy

the quality of the resulting heuristic. In the following sec T4 keep the size of the synchronized proddcb A’ below
tion, we introduce one particular abstraction strategyctvh the boundN, we may need to shrinki or A’ before com-

we use for experimentally evaluating the approach. puting the product. The shrinking strategy deciddxsch of
. A and.A’ to shrink anchowto shrink them.
An Abstraction Strategy Regarding thewhich question, we take the simple ap-

The abstraction strategy we consider in this section makes proach of always shrinking the current (non-atomic) ab-
use of two pieces of information: the merging strategy is straction. Our intuition is that atomic abstractions ang-ty
based on connectivity properties of the causal graph of the cally much smaller and thus contain fewer states that can be
SAS' task, and the shrinking strategy relies on shortest dis- abstracted without losing significant information. Clgarl
tances in the abstract transition graphs. We will now explai more elaborate strategies are possible.

both components in detail. As for how, we need an algorithm that accepts an abstrac-
_ tion A and target sizé/ and computes a homomorphism of
Merging Strategy A with M abstract states. In our case, weket= Lﬁj

The merging strategy we use is a special case of what we call to ensure that the following synchronized product opematio
a linear merging strategy. A linear strategy always main- respects the size limiv.

Shrinking an abstraction of sizZe’ to sizeM can be un- states inB’, or if the f-values are equal and the states in
derstood as a sequenceMf — M individual simplification B have a higheh-value.

steps, combining two abstract states in each step. Formally 5 - ¢ there is any bucket which contains more than one state,

o X Lo . .
this is equivalent to applying/” — M homomorphisms in select the least important such bucket and combine two of
sequence, each of which maps two abstract steaesls’ to its states, chosen uniformly at random.

a new abstract statgs, s’} while leaving all other abstract)])
states intact, mapping them to themselves. Adopting this 3. Otherwise, all buckets contain exactly one state. Cognbin
view, we can describe a shrinking strategy by stating which the states in the two least important buckets.
pair of abstract statesands’ it chooses to combine when- The third rule usually comes into play only if the target
ever shrinking is necessary. abstraction sizé/ is very low. As long as it does not trig-
A first, very simple idea is to combine states arbitrarily, ger, the strategy ig-preserving. We remark that the order-
i.e., to select ands’ by uniform random choice. We did ing by f-values in the first rule has a very beneficial impact
a few experiments with this approach, which led to terrible on performance, while the tie-breaking criterion (conside
performance. A key reason for this is that combining two ing high h-value states more important) is less critical. We
randomly selected nodes frequently leads to short-cuteint have observed similar, but slightly worse performance with
abstract transition graph: ¥is close to the initial state and the opposite tie-breaking criterion. This concludes the di

s’ is close to a goal state, then combininands’ introduces cussion of our abstraction strategy.
a short path from the initial state to the goal which did not
previously exist. Representational Power
_This problem can be avoided by only combining states \ye jgentified some interesting theoretical properties af ou
with identical goal distance. We say that thevalue of framework, taking the form ofepresentational powere-
an abstract state is the length of a shortest path from sults: Which heuristic quality can be achieved in principle

to some abstract goal state, in the abstract transitiorhgrap \yhen suitable abstraction strategies are chosen? Outgesul
Similarly, the g-valueof s is the length of a shortest path rgjnforce the motivation for linear antpreserving abstrac-

from the abstract initial state to, and the/f-valueis the tion strategies, introduced in the previous section. Fok la
sum of theg- andh-values. A shrinking strategy is called of space, we describe the results informally. Formal proofs
h-preservingif it only combines vertices with identical- will be made available in a long version of the paper.

values g-preservingf it only combines vertices with identi-
cal g-values, andf-preservingf it is both h-preserving and Comparison to Additive Pattern Databases

g-presenving. ery . We have previously observed that our abstraction heusistic
It is easy to prove that if4’ is an abstraction aft pro- are a generalization of pattern database heuristics: Tt PD

duced by am:-preserving shrinking strategy, thest' = heuristich” of a patternP C V is identical to the heuristic

hA, i. e., both abstractions represent the same heuristic. (Of h™* of the projectionrp.

course, A may nevertheless contain relevant information not However, PDB heuristics are not limited to the use of a

contained inA’, leading to a difference in heuristic qual- ingle patternP. To achieve better heuristic quality, many

ity when computing the synchronized product.for A’ patterns are typically considered, which can be combined
with another abstraction.) Similarly-preserving abstrac- py taking the maximum of individual heuristic estimates, or
tions preserve distances from the abstract initial stagyo in some cases, by taking their sum. Taking the maximum

abstract state, which are lower bounds for the distances of ingdividual estimates is of course also possible in our ap-

from the concrete ipitial state to any concrete state mapped proach if we compute several abstractions (as we will see in

to s by the abstraction. _ the experimental evaluation, this is sometimes beneficial)
We are interested in preservifg and g-values (and Considering sums, two pattertis and P’ are additive iff

thus f-values) because thg-value of an abstract state is ;P . ,P' < p i . their sum is admissible. In most plan-

a lower bound on thef-values associated with the corre- ying gomains, exploiting additive patterns is critical foe

sponding nodes in Asearch. The Aalgorithm expandsall g,ccinct representation of high-quality heuristics.

search nodes with f(n) < L* andno search node with A simple sufficient condition for additivity of patterns,

f(n) > L*, whereL" is the optimal solution length for the jqentified by Edelkamp (2001), is that no operator affects

task. Thus, abstract states with higivalues are expected o yariaplesin both patterns. Under the same condition, any ab

be encountered less often during search, so combining them g4 ctions4 and A’ with varsetA) C P andvarsetA’) C

is less likely to lead to a loss of important information. P’ are additive, i. e.hA + BA < h*_— simply because ;ny
In summary, we are interested in preservingand g- abstractiond is’a.n ébstraction_c»fvarse(A).

values, and we prefer to combine states with higralues. More interestingly, additivity isautomatically captured

To achieve these goals, we use the following strategy for se- by our abstraction approach, provided that we limit our-

lecting the states to combine: selves toh-preserving abstractions. Lét and P’ be ad-

1. Partition all abstract states inbmckets Two states are ditive patterns, letd be anyh-preserving abstraction afp,
placed in the same bucket iff theje and h-values are ~ let. A’ be anyh-preserving abstraction ofp,, and let be
identical. We say that bucke® is more importantthan anyh-preserving abstraction of © A’. Thenh® dominates
bucketB’ iff the states inB have a lowerf-value than the the sum of the pattern database heuristie8 + h”". Hence

additivity is captured “automatically” in the sense thaty, f timal planning? To answer this question, we compare to
every sum of concisely representable additive patterngieur two baseline approaches, namélynd search(A* with a
tics, there exists a dominating abstraction heuristic dlhsd heuristic function which i9 for goal states and other-
has a concise representation. The reason is that every operwise) and thé™* heuristic (Bonet & Geffner 2001). These
ator sequence defining a goal path from some abstract statetwo heuristics were both implemented within the same plan-
of B can be partitioned into two disjoint operator sequences ning system as LFPA, to allow a fairly unbiased compar-

representing corresponding goal pathsliand.A’. ison. We also compare to the BFHSP planner (Zhou &
_ N _ Hansen 2006), which was the best-performing sequentially
Domain-Specific Quality Bounds optimal planner at IPC4. Finally, for those benchmarks in
Another Way of Studying the representationa' power Of a our CO||eCti0n Wh|Ch were part Of the IPC5 benchmark Suite
class of heuristics is by consideridgmain-specifiquality (PIPESWORLD TANKAGE and TPP), we compare to the of-

bounds. In particular, we are interested in domains for tvhic ~ ficial competition results for the participating sequelhtia
the perfect heuristid:* can be represented as a polynomial- Optimal planners, FDP (Grandcolas & Pain-Barre 2007) and
time computable abstraction heuristic. MIPS-BDD (Edelkamp 2005).

Clearly, this can only be possible in planning domains Considering the close relationship of our approach to pat-
which admit polynomial-time optimal solution algorithms. ~ tern databases, the second guiding question is: Can our
Helmert (2006b) identifies six such domains in the IPC flexible abstraction heuristics result in better planner pe
benchmark set, namelyRGPPER MOVIE, PSR, $HED- formance than heuristics based on a carefully selected set
ULE, and two variants of RoMELA. Of these six domains, ~ Of pattern databases? To answer this question, we com-
all but PSRhave polynomial-time abstraction strategies for ~ pare to the automatic pattern selection approach of Haslum
computing perfect abstraction heuristi¢sVe do nothavea et al. (2007), which together with Edelkamp’s approach
positive or negative result for PSR, but believe that no per- (Edelkamp 2006) defines the state of the art in planning with
fect polynomial-sized abstraction heuristics exist.) Btor pattern databases. Here, we are interested in more detailed
over, the results still hold when only allowing linear mergi results, so we do not just compare total runtime, but also
and f-preserving shrinking strategies, reinforcing our intu- Preprocessing time for computing the heuristic, number of
ition that these classes of abstraction strategies arelusef ~ node expansions during search, and search time.

To give an example, a perfect abstraction heuristic for ~ Both our and the pattern database approach require — or at
GRIPPERCan be obtained as follows. Start with the vari- least significantly benefit from — some parameter tuning. In
ables for the robot position and for the gripper hands. Merge our case, we manually chose an appropriate value for the ab-
these without any shrinking. Then include all ball variahle straction size bound’ on a per-domain basis. In two of the
in an arbitrary order. Combine any two states iff they agree Six domains, it also proved slightly beneficial to compute
on the status of robot and gripper hands, as well as on the several abstractions and use the maximum of their heuris-
numbers of balls in each room. tic estimates. In these cases, we computed three abstractio

In contrast, PDB heuristics (with maximization and sum- heuristics. (For the second and third abstraction, the merg
ming) cannot succinctly represent perfect heuristics y an ing strategy randomizes the variable order so as to obtain
of these domains apart from the trivialdWie. In the GRrip- substantially different abstractions in each pass.) The pa
pERdomain, for example, there exists no polynomial-sized rameter tuning for the pattern selection approach we com-
family of PDBs which can guarantee a heuristic value of at pare to was also performed on a per-domain basis.

least(Z + ¢)h*, for anye > 0.2 Full experimental results are shown in Tablé In each
domain except bGisTicsand PSR, all tasks that can be
Experimental Evaluation solved by any of the planners are included in the table.

For LoGisTics we omit four easy tasks solved by all ap-
proaches, and for PSR, we only report the five hardest tasks.
Empty entries in the table denote tasks that were not solved
by the respective technique except for the FDP and MIPS
planners in the PESWORLD-NOTANKAGE, SATELLITE,
LoaisTicsand PSR domains, where no data was available.
Our first observation is that the overall performance of
LFPA (left half of Table 1) is excellent. There is only a siag|
instance which can be solved by another planner but not by
LFPA (TPP-08 solved by MIPS-BDD), and not a single in-
stance which can be solved by anotheuristic searctplan-
ner but not by LFPA, as MIPS-BDD uses symbolic breadth-
first search. Many tasks are only solved by LFPA; to the
best of our knowledge, this is the first time these tasks are
2Any single pattern may contain only a logarithmic number of ~Solved by a domain-independent sequentially optimal plan-
balls; and the patterns are not additive if more than one erth -
contains the robot position variable. Hence, the robot mare 3The experiments were conducted on a machine with a 3.066
considered for only a logarithmic number of balls. GHz CPU, using a 1.5 GB memory limit and 30 minute timeout.

Encouraging theoretical results do not necessarily infpy t
an algorithm can be made to work well in practice. To evalu-
ate the practical usefulness of our abstraction heurjsties
conducted an empirical study on six domains from the IPC
benchmark suite which are known to be hard for optimal
planners. We use the abstraction strategy introduceckearli
which we refer to as “LFPA’ (folinear, f-preserving ab-
straction) throughout this section. We implemented LFPA
within a standard heuristic forward search framework, gisin
the A" algorithm with full duplicate elimination.

There are two guiding questions for our study. Firstly, is
a heuristic planner based on our flexible abstraction heuris
tics competitive with the state of the art in sequentially op

inst, H L H LFPA ‘ PDB ‘ blind ‘ pmax ‘ BFHSP ‘ FDP ‘ MIPS inst, H L* H 7, | A s | H 7, | P | =
PIPESWORLDNOTANKAGE: N = 2500 PIPESWORLDNOTANKAGE: N = 2500

01 5 0.07 5.34 0.00 0.00 0.05 01 5 0.07 0 0.00 5.32 0 0.02
02 12 0.55 6.83 0.02 0.02 0.10 02 12 0.54 598 0.01 6.81 0 0.02
03 8 1.47 10.44 0.03 0.03 0.15 03 8 1.47 7 0.00 10.40 10 0.04
04 11 1.24 16.52 0.18 0.19 0.20 04 11 1.20 2093 0.04 16.46 158 0.06
05 8 5.59 31.72 0.19 0.18 0.31 05 8 5.58 88 0.01 31.64 9 0.08
06 10 5.30 38.56 0.82 0.96 0.58 06 10 5.25 1483 0.05 38.48 16 0.08
07 8 23.37 85.90 1.02 0.61 1.21 07 8 23.36 203 0.01 85.78 0 0.12
08 10 5.23 194.04 5.97 4.77 1.86 08 10 5.20 475 0.03 193.92 0 0.12
09 13 10.89 21589 | 145.11 88.91 102.33 09 13 6.12 128236 4.77 215.69 0 0.20
10 18 113.18 617.12 1486.97 10 18 8.09 3002505 | 105.09 616.82 457 0.30
11 20 7.22 380.44 7.12 18.46 147.34 11 20 4.49 186040 2.73 379.14 9360 1.30
12 24 13.09 568.38 25.50 72.41 12 24 4.27 638241 8.82 564.35 40470 4.03
13 16 10.51 600.05 6.13 8.08 13 16 10.19 18946 0.32 599.19 862 0.86
14 30 231.49 1239.93 14 30 6.04 13554766 | 225.45 1215.31 192184 24.62
15 26 32.15 1433.73 63.10 131.06 15 26 18.95 723424 13.20 1427.60 36387 6.13
17 22 107.21 17 22 16.90 3960903 90.31

21 14 12.92 2.41 3.05 21 14 12.75 7607 0.17

23 18 41.76 303.25 23 18 31.19 351982 10.57

24 24 313.44 24 24 28.53 9399079 | 284.91

PIPESWORLD-TANKAGE = 1000 PIPESWORLD-TANKAGE: = 1000

01 5 1.00 10.59 0.00 0.00 0.15 0.05 1.09 01 5 1.00 0 0.00 10.55 0 0.04
02 12 1.91 20.48 0.01 0.04 0.20 0.41 1.32 02 12 1.89 695 0.02 20.44 0 0.04
03 8 3.99 99.27 1.45 1.60 5.21 2.17 7.98 03 8 3.84 1522 0.15 98.92 15 0.35
04 11 9.98 244.80 5.66 17.56 20.44 27.75 17.22 04 11 8.59 27933 1.39 244.31 791 0.49
05 8 8.68 162.32 0.34 1.97 5.04 1.27 10.09 05 8 8.52 584 0.16 161.94 13 0.38
06 10 17.43 409.57 1.63 8.17 16.35 8.57 22.78 06 10 17.03 2458 0.40 409.17 27 0.40
07 8 25.84 379.66 | 1295.05 12.41 142.11 07 8 24.99 2066 0.85

08 11 43.70 1092.63 08 11 23.41 113187 20.29

11 22 26.22 795.34 55.91 436.65 11 22 6.21 894491 20.01 771.20 69689 24.14
13 16 70.14 13 16 24.78 991522 45.36

15 30 161.29 15 30 18.14 6177384 | 143.15

21 14 52.79 121.27 736.92 375.14 21 14 49.58 51569 3.21

31 39 50.36 2453 673.47 31 39 21.54 1358979 28.82

SATELLITE: N = 10000 (3 abstractions) SATELLITE: N = 10000 (3 abstractions)

01 9 0.01 0.27 0.00 0.00 0.03 01 9 0.01 0 0.00 0.26 28 0.01
02 13 0.08 0.32 0.01 0.01 0.08 02 13 0.08 0 0.00 0.30 324 0.02
03 11 3.16 2.10 0.30 0.18 0.16 03 11 3.16 0 0.00 1.87 2243 0.23
04 17 6.92 11.54 9.34 6.26 3.08 04 17 6.92 0 0.00 8.47 19523 3.07
05 15 47.74 110.33 119.45 05 15 32.14 86958 15.60 14.28 264551 96.05
06 20 21.19 634.77 707.85 265.45 06 20 15.20 45809 5.99 14.57 1435962 | 620.20
LogisTics N = 200000 LoaisTics N = 200000

4-0 20 0.10 3.21 0.09 0.06 0.11 4-0 20 0.10 0 0.00 3.20 0 0.01
4-1 19 0.09 5.48 0.08 0.04 0.16 4-1 19 0.09 0 0.00 5.47 0 0.01
5-0 27 0.87 16.75 1.12 1.03 241 5-0 27 0.87 0 0.00 16.74 0 0.01
5-1 17 0.88 4.58 0.22 0.09 0.18 5-1 17 0.88 0 0.00 4.56 0 0.02
6-0 25 3.65 16.48 5.96 3.34 3.62 6-0 25 3.65 0 0.00 16.47 0 0.01
6-1 14 3.85 3.16 0.28 0.06 0.11 6-1 14 3.85 0 0.00 3.14 0 0.02
7-0 36 24.56 91.12 7-0 36 24.56 0 0.00 90.97 832 0.15
7-1 44 26.84 156.28 7-1 44 26.84 0 0.00 153.09 17258 3.19
8-0 31 37.09 79.49 8-0 31 37.08 0 0.01 79.33 832 0.16
8-1 44 40.77 160.02 8-1 44 40.77 0 0.00 158.83 4160 1.19
9-0 36 55.47 127.52 9-0 36 55.47 0 0.00 127.28 1120 0.24
9-1 30 53.42 92.85 9-1 30 53.41 0 0.01 92.81 0 0.04
10-0 45 117.46 497.51 10-0 45 108.57 0 8.89 480.88 40288 16.63
10-1 42 129.97 405.24 10-1 42 105.66 0 24.31 384.78 58720 20.46
11-0 48 129.82 377.28 11-0 48 128.95 0 0.87 354.02 55072 23.26
11-1 60 284.91 11-1 60 128.55 2608466 | 156.36

12-0 42 185.90 545.76 12-0 42 169.61 0 16.29 522.71 53552 23.05
12-1 68 221.51 12-1 68 164.63 0 56.88

PSR:N = 200000 PSR:N = 200000

29 21 3.47 255.47 2.30 3.66 1.43 29 21 3.47 0 0.00 255.43 124 0.04
36 22 67.94 1026.39 16.82 27.49 25.15 36 22 67.80 1061 0.14 1026.20 139 0.19
40 20 38.29 1309.36 11.91 15.11 7.94 40 20 37.87 3171 0.42 1308.62 1709 0.74
48 37 36.16 787.37 457.08 48 37 36.16 0 0.00 787.09 1623 0.28
49 47 67.75 49 47 62.13 233779 5.62

TPP:N = 50000 (3 abstractions) TPP:N = 50000 (3 abstractions)

01 5 0.00 0.01 0.00 0.00 0.02 0.00 0.86 01 5 0.00 0 0.00 0.00 5 0.01
02 8 0.00 0.33 0.00 0.00 0.04 0.00 0.86 02 8 0.00 0 0.00 0.33 8 0.00
03 11 0.01 0.52 0.00 0.00 0.04 0.00 0.86 03 11 0.01 0 0.00 0.52 11 0.00
04 14 0.04 1.74 0.00 0.00 0.07 0.03 0.90 04 14 0.04 0 0.00 1.73 18 0.01
05 19 5.83 3.44 0.24 0.24 0.74 1.59 0.99 05 19 5.83 0 0.00 3.10 6790 0.34
06 25 106.45 173.66 350.84 3.93 06 25 98.79 12121 7.66 11.96 1288743 | 161.70
07 34 602.66 22.11 07 34 150.46 3610376 | 452.20

08 40 35.07 08 40

Table 1. Left: Runtimes of optimal planners across the teshains. Columrinst. denotes problem instance, column
optimal solution length. Other columns denote runtimesitféent sequentially optimal heuristics and planningteyss,
including ourLFPA heuristic. (For FDP and MIPS, results are only availableFi@eSwoORLD TANKAGE and TPP.)

Right: Detailed comparison between abstraction and padt@tabase (PDB) heuristics,, is the time to compute the heuristic;
nodeds number of hodes expanded to prove the optimal lower bdiing; search time.

Each domain is shown with the abstraction size bol¥naind the number of abstractions computed, if larger than

ner. The only approach that appears generally competiive i Conclusion

the pattern database heuristic. N _ Planning heuristics based on abstract transition gragha ar
For the pattern database approach, it is worth looking at powerful tool for optimal sequential planning. They share

the data in a bit more detail (right half of Table 1). Ingetera the strengths of pattern database heuristics while atiagia

LFPA tends to outperform PDB with respect to runtime and - the combinatorial explosion problem that arises as the num-

number of instances solved. . ber of variables in a pattern increases.

_Interestingly, we can identify two groups of domains ex- |n the context of this general framework, we described a
hibiting different behaviour. In theiPEsworLDdomains, concrete strategy, LFPA, which generates abstractions of a
LFPA solves significantly more instances, but on the set particular kind. We showed that the representational power
of commonly solved instances, PDB tends to require much of the framework in general exceeds that of PDB heuris-
fewer node expansions. In contrast, iNTELLITE, LOGIS- tics, and that an implementation of LFPA is very competitive

Tics, and TPP, LFPA solves the same or only a few more jith the state of the art in sequentially optimal planning.

instances, but expands significantly fewer nodes (in PSR the
behaviour is somewhat mixed).

Significant improvements are still possible. In particular

our current shrinking strategy only takes into account grap

While these observations appear somewhat contradictory, distancescompletely ignoring graphabelsin the decision
they have a common explanation. Using only projections, of how to simplify an abstraction. Developing more elabo-

PDBs allow abstract spaces to be more compactly repre- rate abstraction strategies thus remains an exciting fopic
sented, and therefore they allow the use of larger abstrac- fyture research.

tions. But there comes a point when this compactness is not
enough to capture even the smallest projection that would be
required to obtain a useful heuristic. The LFPA abstraction
on the other hand, have to be smaller (much smaller, in some
cases), but are better suited to capture “some but not all” of
the relevant information.

Depending on the nature of the domain, the above has
different effects. In the PEswoRLD domains, the LFPA
abstractions have to be very small to be feasible (note in
Table 1 thatV = 2500 and N = 1000 for these two do-
mains). Hence PDB does much better on small problems,
exploiting large abstractions giving near-perfect hdioss
In larger problems, however, the relevant projections ef th

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.AlJ 129(1):5-33.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases
Computational Intelligenc&4(3):318-334.

Drager, K.; Finkbeiner, B.; and Podelski, A. 2006. Di-
rected model checking with distance-preserving abstrac-
tions. InProc. SPIN 200619-34.

Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 200113-24.

Edelkamp, S. 2005. External symbolic heuristic search

state space become too large to be adequately captured by \yith pattern databases. Rroc. ICAPS 200551—60.

PDBs, so that search performance quickly deteriorates. Thi
deterioration happens a bit more slowly for the LFPA ap-
proach, which can still capture some relevant information
despite its small abstractiofis.

In SATELLITE, LOGISTICS and TPP, it appears that good
PDB heuristics require huge abstractions even in small-prob
lems. This is easiest to see iR ELLITE, where each goal
(“having a picture”) corresponds to a large disjunction of
options (“take picture with camera A on satellite X", “take
picture with camera B on satellite Y”, ...): unless a pattern
contains all these options, there is always a short-cutén th
corresponding PDB (an option whose critical preconditions

have been abstracted away). LFPA can ameliorate these dif-

ficulties by combining options that are equivalent (cf. the
perfect abstraction heuristic forREPPER); but this is not
enough to scale much further than PDB heuristics.

We would overstate our results if we claimed that LFPA
is superiorto a well-chosen PDB heuristic. But we can cer-
tainly observe that our approach is competitive — or more
than that — with the current state of the art for automatycall
derived PDBs, and optimal sequential planning in general.

“It should be noted that, when the PDB approach fails, it is of-
ten due to the pattern selection technique taking too lofigvel
extend the timeout to two hours, the PDB algorithm can sabuve f
additional instances inIPESWORLD-NOTANKAGE and five addi-
tional instances in PESWORLD TANKAGE, closely approaching
the number of tasks solved by LFPA in these domains.

Edelkamp, S. 2006. Automated creation of pattern
database search heuristics. Rroc. MoChArt 2006 35—

50.

Grandcolas, S., and Pain-Barre, C. 2007. Filtering, decom-
position and search space reduction for optimal sequential
planning. InProc. AAAI 2007

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. Proc.
AAAI 2007 1007-1012.

Helmert, M. 2006a. The Fast Downward planning system.
JAIR26:191-246.

Helmert, M. 2006bSolving Planning Tasks in Theory and
Practice Ph.D. Dissertation, Albert-Ludwigs-Universitat
Freiburg.

Hoffmann, J.; Sabharwal, A.; and Domshlak, C. 2006.
Friends or foes? An Al planning perspective on abstraction
and search. IRroc. ICAPS 2006294-303.

Kautz, H.; Selman, B.; and Hoffmann, J. 2006. Satplan:
Planning as satisfiability. IlPC-5 planner abstracts

Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint
programming AlJ 170(3):298-335.

Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search.AlJ 170(4-5):385—-408.

