
Domain-Independent Construction of Pattern Database Heuristics for
Cost-Optimal Planning

Patrik Haslum and Adi Botea
NICTA & Australian National University
firstname.lastname@nicta.com.au

Malte Helmert
Albert-Ludwigs-Universität Freiburg

helmert@informatik.uni-freiburg.de

Blai Bonet
Universidad Simón Bolı́var

bonet@ldc.usb.ve

Sven Koenig
USC

skoenig@usc.edu

Abstract

Heuristic search is a leading approach to domain-independent
planning. For cost-optimal planning, however, existing ad-
missible heuristics are generally too weak to effectively guide
the search. Pattern database heuristics (PDBs), which are
based on abstractions of the search space, are currently one
of the most promising approaches to developing better ad-
missible heuristics. The informedness of PDB heuristics de-
pends crucially on the selection of appropriate abstractions
(patterns). Although PDBs have been applied to many search
problems, including planning, there are not many insights
into how to select good patterns, even manually. What con-
stitutes a good pattern depends on the problem domain, mak-
ing the task even more difficult for domain-independent plan-
ning, where the process needs to be completely automatic and
general. We present a novel way of constructing good pat-
terns automatically from the specification of planning prob-
lem instances. We demonstrate that this allows a domain-
independent planner to solve planning problems optimally in
some very challenging domains, including a STRIPS formu-
lation of the Sokoban puzzle.

Introduction
Pattern databases (PDBs; Culberson & Schaeffer 1998) are
one of the most successful approaches to creating admissi-
ble heuristics for single-agent search. PDB heuristics have
been used to solve a number of challenging search problems,
including both benchmark problems such as the(n2 − 1)-
puzzle, and application problems, such as multiple sequence
alignment (Felner, Korf, & Hanan 2004). PDBs are abstrac-
tion heuristics, obtained by abstracting away all but a part
of the problem (thepattern) small enough to be solved op-
timally for every state by blind exhaustive search. The re-
sults are stored in a table in memory (thepattern database)
and define an admissible and consistent heuristic function by
mapping states into corresponding abstract states and read-
ing their associated values from the table. Heuristic esti-
mates from several abstractions can be combined by taking
their maximum or, under certain conditions, their sum.

The main problem with PDB heuristics is that the qual-
ity of the heuristic depends crucially on the selection of a
collection of abstractions (patterns) that are appropriate to

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the problem domain, or even the problem instance. What
makes this problem hard is that the time and memory re-
quired to compute and store the pattern database limits
the size of the patterns that can feasibly be used. There
is some knowledge about what constitutes good quality
patterns for some specific domains where PDB heuristics
have been successfully applied (e.g. Holte et al. 2006;
Korf & Felner 2007), but this has been obtained by experi-
mentation and insight into the structure of the problem. This
is not satisfactory for domain-independent planning, where
the pattern selection process needs to be completely auto-
matic and general. That is the problem we attack.

Pattern databases have been applied to domain-
independent planning before: Edelkamp’s (2001) was
the first application of PDB heuristics in planning, and in-
troduced abstractions based on multi-valued state variables.
Haslum, Bonet & Geffner (2005) refined the abstraction, by
the inclusion of global (mutex) constraints, obtaining more
accurate heuristic estimates for patterns of a fixed size. They
also introduced the idea of an “incremental” construction
of the collection of patterns. However, their methods apply
only to regression planning, and do not easily generalize
to progression (forward search). This is a weakness, since
progression is in some domains inherently more efficient
and also easier to extend beyond STRIPS. Edelkamp (2006)
cast pattern selection as an optimization problem, and used
a genetic algorithm, with the mean heuristic value as the
fitness function, to find good solutions.

Building on these works, our main contribution is a prin-
cipled approach to pattern selection. The core of the ap-
proach is the measure of heuristic quality by which candi-
date collections of patterns are evaluted, based on estimat-
ing what the size of the search tree would be for a given
PDB heuristic using a result due to Korf, Reid and Edelkamp
(2001). We show this measure to be more informed than the
mean heuristic value, proposed by Edelkamp. While the re-
sult has previously been used to explain experimentally ob-
served differences in search performance arising from dif-
ferent PDB heuristics (Holteet al. 2006), we develop it into
a practically usable method for constructing a good PDB.

Background
A propositional STRIPS planning problemP with additive
costs consists of a finite set of atoms, a finite set of actions,



a completely specified initial state,s0, and a goal condition,
G. Each actiona has a set of precondition atoms (pre(a)),
which must hold in a state for it to be applicable, and sets
of atoms made true (add(a)) and false (del(a)), respectively,
when it is applied. A plan is an applicable sequence of ac-
tions that leads to a state satisfying the goal condition. Every
action has a cost,cost(a), and the cost of a plan is the sum
of the costs of the actions in the plan.

Parallel to the propositional representation of planning
problems, we consider a representation by multi-valued state
variables (i.e. variables taking values from a finite set other
than the set{true, false}), which are implicit in many plan-
ning problems. These implicit variables correspond to a par-
ticular type of invariants, namely sets of atoms such that
exactly one atom in the set is true in any reachable state.
Methods for automatically extracting such “exactly-one” in-
variants from STRIPS encodings have been proposed (e.g.
Helmert 2006). The rationale for the use of a multi-valued
state variable encoding as the basis for abstractions is that
it allows PDBs to be represented much more compactly:
the PDB for a single variable withn values hasn entries,
whereas the corresponding PDB in a propositional encoding
would have2n entries (2n − n of which are irrelevant, since
they correspond to states that can never be reached).

Abstractions and Pattern Databases An abstraction of
the problem is defined by a subset,A, of the state variables,
by simply removing from the preconditions and effects of
all actions, and from the initial state and goal, all variables
(atoms) not inA. We call the setA thepattern, and denote
by hA(s) the minimum cost of reaching a goal state from
the abstract state corresponding to states, in the state space
of the abstract problem: this is a lower bound on the cor-
responding cost in the state space of the original problem
P , and thushA is an admissible heuristic. It is also con-
sistent. The size of the abstract state space is bounded by∏

v∈A |Dv|, whereDv is the domain of variablev, i.e., the
set of values it can take. When this is sufficiently small, the
optimal cost functionhA(s) can be computed for alls by
a breadth-first search in backward direction from all goal
states and stored in a table, which constitutes the pattern
database for patternA.

Constrained Abstraction Because the abstraction ig-
nores all conflicts involving variables not in the patternA,
states in the abstract space may become reachable even
though they do not correspond to any reachable state in the
real state space. This often causes the heuristichA to under-
estimate the cost of reaching the goal from a states more
than necessary and also weakens the ability of the heuris-
tic to detect deadlock states (states from which no goal state
is reachable). Constrained abstraction (Haslum, Bonet, &
Geffner 2005) improves the accuracy ofhA by enforcing in
the abstraction invariant conditions that hold in the original
problem. Of particular interest are binary “at-most-one” in-
variants,i.e.static mutexes. In solving the abstract problem,
application of an action to an abstract state is disallowed if
the preconditions of the action and the abstract state together
violate a mutex. The resulting heuristic function remains ad-
missible and consistent.

Collections of Patterns
Before we go into the question of how to select a collec-
tion of patterns, we establish some results about the heuristic
functions that can be constructed from such a collection.

The Canonical Heuristic Function An admissible
heuristic functionh is said todominateanother admissible
heuristich′ iff h(s) > h′(s), for all s. Clearly, if pattern
A is a subset of patternB, hB dominateshA. Note that
this also means thathA yields lower bounds (i.e., is an
admissible heuristic) for optimal cost in the abstract state
space defined by patternB.

Given two PDB heuristicshA andhB, the heuristic func-
tion h(s) = max(hA(s), hB(s)) is also admissible and
clearly dominates bothhA andhB alone. If the set of ac-
tions that affect some variable inA is disjoint from the
set of actions that affect any variable inB, the heuristic
h(s) = hA(s) + hB(s) is also admissible. In this case,
we say the patterns areadditive(this additivity condition is
only sufficient, not necessary, but has the advantage that it
is easy to check). A set of patterns is additive, according
to this condition, iff all patterns in the set are pairwise addi-
tive. Clearly,hA(s)+hB(s) dominatesmax(hA(s), hB(s)).
Note, however, thathA∪B, i.e. the PDB for a pattern contain-
ing all variables in bothA andB, dominates both the sum
and maximum ofhA andhB.

In general, given a collection of patterns,C =
{P1, . . . , Pk}, where the additivity condition stated above
holds between some of the patterns but not all, there is a
unique way of combining the corresponding PDB heuristics
into an admissible (and consistent) heuristic function that
dominates all others. We will call this thecanonical heuris-
tic functionof the pattern collection and denote it byhC .

Theorem 1 Let C = {P1, . . . , Pk} be a collection of pat-
terns, and letA be the collection of all maximal (w.r.t. set in-
clusion) additive subsets ofC: the canonical heuristic func-
tion ofC is

hC(s) = max
S∈A

∑

P∈S

hP (s)

The canonical heuristic can be simplified by removing from
it any sum over an additive setS for which there is another
additive setS′ such that for every patternPi ∈ S, Pi ⊆ Pj

for somePj ∈ S′, as the sum overS will always be dom-
inated by the sum overS′. Nevertheless, in the worst case,
the number of additive non-dominated subsets of a collec-
tion may be exponential.

Finding the maximal additive subsets of a collection of
patterns is equivalent to the problem of finding all maximal
(w.r.t.set inclusion) cliques in a graph, which requires expo-
nential time in the worst case because there can be exponen-
tially many such cliques. The algorithm by Tomita, Tanaka
& Takahashi (2004) runs in time polynomial in the number
of maximal cliques, which we found to be efficient enough.

Dominance in a Collection As noted above, if all vari-
ables in patternA are also included in patternB, hB domi-
nateshA. However, this does not always mean that pattern



A is of no use, since it may be additive with some patterns
with whichB is not. In a collectionC, a patternP is redun-
dant ifhC = hC−{P}, which is the case ifP does not appear
in any of the non-dominated sums in the canonical heuristic
function. A pattern containing no variable mentioned in the
goal condition is always redundant.

Pattern Construction
The main question we address is the following: Given
a planning problem, with (multi-valued) state variables
{V1, . . . , Vn}, and a limit on the amount of memory that
may be allocated to PDBs, how do we construct a collection
of patterns,C = {P1, . . . , Pk}, that respects the memory
limit and whose canonical heuristic function gives the best
search performance?

Estimating Search Effort
Korf, Reid and Edelkamp (2001) develop a formula for
the number of nodes expanded by a tree search (IDA*)
with given cost boundc, using an admissible and consistent
heuristich for pruning. Their formula (slightly rewritten) is

∑

k=0,...,c

Nc−kP (k) (1)

whereNi is the number of nodes whose accumulated cost (g
value) equalsi andP is the so calledequilibrium distribu-
tion of the heuristic functionh: P (k) is the probability that
h(n) 6 k, wheren is a node drawn uniformly at random
from the search tree up to the cost limitc. Technically, the
formula holds only in the limit of largec. The same formula
holds also for a graph search (A*), but in that case the equi-
librium distribution is defined by random drawing of nodes
uniformly over the state space up to costc, instead of the
search tree. In the presence of transpositions (multiple paths
to the same state) these are not the same.

From our perspective,c andNi are fixed. However, be-
cause we can influence the heuristic by our selection of pat-
terns, we can influenceP . Thus, ideally, we want to select
a collection of patterns whose associated PDB heuristic re-
sults in an equilibrium distribution that minimizes (1). From
Ni, P andc we can obtain an absolute measure of the qual-
ity of each candidate heuristic. These parameters are not
known to us, but can be estimated. However, we do not
need such an estimate of absolute quality. We only need to
determine which of two given heuristic functionsh andh′ is
better. Formula (1) suggests that the number of states whose
heuristic value is increased is more important than the mag-
nitude of the increase, in particular increasing the estimated
cost of states whose current estimate is small.

In fact, we will be considering an even more restricted
question: given a base heuristich0, and two alternative im-
provementsh andh′, which improves more overh0?

Pattern Construction as Search
The problem of selecting the best collection of patterns,
subject to the “at least one goal variable” restriction and
the given memory limit, is a discrete optimization problem,
which we approach by defining a search space whose states

are pattern collections and in which the neighbourhood of a
state is defined by a set of modifications to the collection. In
this space, we then search for a good solution.

The starting point of the search is the collection consist-
ing of one pattern for each goal variable, each containing
only that variable. (We assume that the memory limit is
large enough to fit this collection. This is a reasonable
assumption due to the way variables are created from the
planning problem.) From a given collection of patterns,
C = {P1, . . . , Pk}, a new collectionC′ can be constructed
by selecting a patternPi ∈ C, a variableV 6∈ Pi, and adding
the new patternPk+1 = Pi∪{V } to the collection, provided
the total PDB size of the new collection does not exceed the
memory limit. This defines the search neighbourhood ofC.

As each neighbour of a pattern collectionC containsC,
heuristic quality is non-decreasing. However, due to the
memory limit finding the true optimum requires, in general,
an exhaustive search through the space of pattern collec-
tions. As this is not feasible, we settle for finding a local
optimum, using a local search method. In our experiments
we have used simple hill climbing. The search starts with
the initial collection described above, repeatedly evaluates
the neighbourhood of expanded pattern collections and se-
lects the best neighbour to be the current collection in the
next iteration, ending when no extension, permitted by the
size limit, of the current collection results in a significant im-
provement. PDBs corresponding to patterns in the collection
are computed along the way.

Evaluating the Neighbourhood
Evaluating the neighbourhood is the critical step in our
search for a good pattern collection. We need to rank the
relative quality of the pattern collection in the neighbour-
hood of the current collection, and determine whether any
of them offers a significant improvement.

Edelkamp (2006) suggests measuring the quality of a
heuristic by its mean value, which is also related to the
search effort but which is less discriminating than formula
(1), since heuristics with very different equilibrium distri-
butions can have the same mean. The mean heuristic value
of a single PDB is easily obtained by a linear scan of the
PDB, but the mean value of the canonical heuristic function
is not so easily computed. Edelkamp solves this problem by
forcing all PDBs to be additive, through cost relaxation, and
averaging their mean values, but this weakens the heuristic
and assumes that values of different PDBs are not correlated.
Also, it is not clear how the mean is defined if the heuris-
tic value of some states is infinite,i.e., when deadlocks are
recognised by the heuristic.

As an alternative, we derive a relative measure of the qual-
ity of a pattern collection based on formula (1). A collection
C′ in the neighbourhood ofC differs from C only by the
addition of one new pattern,Pk+1. Thus,hC′

(s) can never
be less thanhC(s), for any states, sinceC′ subsumesC.
Formula (1) predicts that the improvement,i.e., the search
effort saved, by usingC′ instead ofC is

∑

k=0,...,c

Nc−k(P (k) − P ′(k)) (2)



whereP andP ′ are the equilibrium distributions ofhC and
hC′

, respectively. Suppose we draw a samplen of m nodes
uniformly at random from the search tree: the resulting esti-
mate of (2) can be written as

1

m

∑

ni

∑

hC(ni)6k<hC′ (ni)

Nc−k (3)

SinceNk, the number of nodes in the search tree within cost
boundk, tends to grow exponentially in general, we can rea-
sonably assume thatNk dominates

∑
i<k Ni, and approxi-

mate the above expression with

1

m

∑

{ni |hC(ni)<hC′(ni)}

Nc−hC(ni) (4)

This approximation greatly simplifies the evaluation, since
for each nodeni in the sample we only need to determine
if hC′

(ni) > hC(ni), rather than having to determine the
exact value ofhC′

(ni). A possible additional simplifying
approximation is to ignore the weight that formula (4) at-
taches to each sample,i.e., simply counting the number of
nodes for whichhC′

is greater thanhC . (In the following,
we refer to this as thecounting approximation.) The im-
pact of this approximation on heuristic quality is evaluated
experimentally later.

Although the method outlined above is conceptually sim-
ple, there are a number of technicalities in it that are both
involved and important for the performance of the search,
which we discuss next.

Comparing hC(n) and hC′

(n) For each noden in the
sample, we need to determine ifhC′

(n) > hC(n). Since
we maintain PDBs for the current collection,hC(n) is avail-
able by simply evaluating the heuristic function. Because
the collectionC contains every pattern inC′ except for the
new patternPk+1, hC′

(n) > hC(n) holds iff hPk+1(n) >
hC(n) −

∑
Pi∈S−{Pk+1}

hPi(n), for some additive subset
S ⊆ C′ that includesPk+1.

The only unknown quantity in this condition is the value
of hPk+1(n). This could be obtained by computing the cor-
responding PDB, but, particularly for large patterns, thisis
costly, and also wasteful if the number of samples to be eval-
uated is small, relative to the size of the PDB. As an alter-
native, we use a search in the abstract state space defined by
patternPk+1 = Pi ∪ {V }. Because we have already a PDB
for Pi, and also for{V } if V is a goal variable, we have
good lower bounds for the abstract space, and the condition
that we are testing provides a, typically rather tight, upper
bound. This combines to make the search quite efficient.

Sampling the Search Space In order to perform the esti-
mation to rank the neighbours of a pattern collectionC, we
need a random sample of nodes,n, drawn uniformly from
the search space up to cost boundc. If the space is a uniform
and complete tree with branching factorb up to a depth of
at leastd, a uniformly sampled node within depthd can be
found by a random walk of lengthl, wherel = i with prob-
ability bi+1−bi

bd+1−1
, that returns the node where the walk ends.

However, the search space associated with a planning prob-
lem, is typically neither uniform nor a tree, and there are
often dead-end states (i.e.states from which no action is ap-
plicable). Moreover, we do not know what is the relevant
depth, since we do not know the solution.

Still, random walks is a simple method for efficiently sam-
pling the reachable state space, so we use it as an approxima-
tion. The solution depth is estimated by the current heuristic,
multiplied by a small constant (in our experiments2) be-
cause the heuristic is underestimating. (For problems with
non-uniform cost, the depth estimate is adjusted by the av-
erage cost/depth ratio, which is also estimated during the
random walks.) To compensate for the imprecision of this
estimate, random walk lengths are binomially distributed
with the mean at the estimated depth. We constrain the ran-
dom walk so as to avoid some known deadlock states (states
for which the current heuristic value is infinite) that are ef-
ficiently detectable, and on encountering a dead-end state
reset the walk to the initial state. Due to these compromises,
our sample of states is not uniformly random over the search
space, but it is stillrelevant, in the sense that it provides an
estimate useful for ranking the neighbours of the current pat-
tern collection.

Avoiding Redundant Evaluations Neighbourhood eval-
uation is the most time consuming part o the search. We
use two techniques to avoid wasting time on evaluating un-
promising neighbours.

The first is based on a static analysis: Adding a variable
V to patternP will only improve over the value ofhP if
the variable directly influences any of those in the pattern.
The causal graph is a common tool for analysing influences
among variables in a planning problem: a variableV ′ can
influence a variableV if some action that changesV has a
precondition or effect onV ′. Due to our use of constrained
abstraction,V ′ also, potentially, influences the patternP if
some action that changes a variable inP has a precondition
in P that is mutex with some value ofV ′. Variables that can
not influence a pattern are not considered for extending it.

The second is statistical: After eachm
t

samples, we cal-
culate for each candidate collection a confidence interval for
its “score” (i.e.how much it improves on the current pattern
collection). If the upper end of the estimated interval for a
collectionC′ is less than the lower end of the interval for a
collectionC′′, it is unlikely thatC′ will turn out better than
C′′, so we do not evaluateC′ any further. For the count-
ing approximation we use Wilson’s (1927) formula for the
confidence interval, since the normal approximation is too
imprecise when the estimated value is very small.

Ending the Search The pattern search comes to an end
when no extension allowed by the size limit improves over
the current pattern collection, but in many cases the point at
which the effort of the search exceeds the value of the gain
in heuristic accuracy occurs much earlier. Thus it is useful
to consider more aggressive cut-off criteria, such as limiting
the number of search iterations or setting a threshold and
disregarding any extension with a smaller improvement. In
the counting approximation of formula (4), the score of an
extension is simply the fraction of samples for which the



Problem Optimal Nodes Total Constr.

no. length exp. time time

7 26 9614 297.2 295.9

35 77 1122 177.1 177.0

54 82 89380 199.5 189.2

65 138 105236 164.7 154.9

78 135 3092044 768.2 336.6

83 164 971728 392.8 288.9

87 149 66719 124.0 117.3

95 25 5232 321.6 320.6

97 164 33559 286.9 283.5

102 149 114078 149.0 136.4

106 205 658844 823.9 752.7

107 38 89985 1272.0 1252.8

115 110 238867 394.6 366.8

118 172 392622 209.3 163.9

121 125 143407 547.3 530.6

125 125 187526 134.5 116.7

126 87 2088379 1014.2 695.8

129 99 36342 242.9 239.0

130 102 142576 261.6 245.2

131 76 170039 065.0 048.4

134 244 218202 695.4 670.1

137 177 3745013 1208.2 692.3

140 290 1097563 1116.8 963.6

141 134 103788 183.0 170.4

143 212 1680744 3607.2 3348.1

148 197 53370 721.9 716.2

150 135 2970347 1059.8 650.8

151 125 80472 168.3 160.2

Table 1: Summary of solved Microban problems. Unsolved
problems in the test set are numbers 93, 99, 105, 108, 112 –
114, 117, 123, 133, 138, and 145.

heuristic value of the extension is greater than that of the
current collection, thus normalised to[0, 1]. This makes it
possible to chose a general threshold value.

Experiments
We evaluate the quality of the pattern collections found by
the method outlined above by using the resulting heuristic
in a cost-optimal forward search planner. The search for a
plan is done using A*. We compare the result of using our
method of evaluating pattern collections with the result of
using the mean heuristic value, as suggested by Edelkamp
(2006). Additionally, we test the impact of the counting ap-
proximation.

To evaluate the planner we use STRIPS encodings of two
hard search problems, Sokoban and the 15-Puzzle, as well
as the Logistics domain. Except where otherwise noted, re-
sults are obtained using the counting approximation and size
limits of 20 million entries for the PDB collection and 2 mil-
lion entries for any single PDB. Total memory use is limited
to 1 GB; all problems reported unsolved are due to the A*
search exhausting memory. Since the method is randomised,
values reported are the median of 3 runs. Variation in the ag-
gregated statistics between runs is relatively small (at most
±10% from the median), but a small number of instances

exhibit much larger variance.
Sokoban The Sokoban puzzle1 is a very difficult single-
agent search problem, even for non-optimal domain-specific
solvers (Junghanns & Schaeffer 2001). The problem in-
stances we use are a collection of “introductory” problems,
meant to be relatively easy for a human to solve, but hard
enough to challenge any domain-independent planner.2 Re-
moving problems that are too easy (solved by blind search)
and too hard (not solved by any planner we tried, including
several state-of-the-art suboptimal planners), leaves 40prob-
lems, with sizes ranging from 4 to 12 stones and (known) op-
timal solution lengths from 25 to 290 moves. The planner is
able to solve 28 of these. The average (across solved prob-
lems) number of expanded nodes per instance is 679,650,
and the average runtime is 600.4 seconds, of which 508.2
(84.6%) is spent constructing the PDB heuristic. Table 1
presents the results in detail.

Sokoban is an example of a domain where forward search
is inherently more effective than regression: regression
search using a variety of admissible heuristics (including
those proposed by Haslum, Bonet, & Geffner 2005) does
not solve any of our 40 test problems, or even all problems
solved by blind forward search.
The 15-Puzzle The(n2−1)-Puzzle is another extensively
studied benchmark in the literature on search, and while
domain-specific solvers are able to solve 24- and even some
35-Puzzle problems (Felner, Korf, & Hanan 2004), the 15-
Puzzle is still a challenge for a domain-independent planner.
We use Korf’s set of 100 problems. The planner is able to
solve 93 problems, using an average of 331,220 node expan-
sions and 1,439.7 seconds, 1,381.9 (96%) spent constructing
the PDB heuristic, per problem.

The 15-Puzzle domain is well suited to regression:
Haslum, Bonet & Geffner (2005) demonstrate that their
PDB heuristics yield good results, over a subset of 24 of
Korf’s problems. However, our pattern selection generates
better heuristics for the same PDB size limit: over the same
set of problems their total number of nodes expanded in
search is 2,559,508 whereas we obtain a total number of
549,147 – less than one fourth.
Neighbourhood Evaluation by Mean Value We compare
the results of our pattern selection method against using
mean heuristic value, as suggested by Edelkamp (2006), to
rank pattern collections in the search neighbourhood. The
mean value of the canonical heuristic function is estimated
by sampling. Due to the problems with defining a sensi-
ble mean value when some heuristic values are infinite, we
restrict the comparison to the 15-Puzzle and Logistics do-
mains, which have no (reachable) deadlock states. In these
experiments we use a fixed limit on the number of itera-
tions in the pattern search (set to roughly equal that result-
ing when using our threshold cut-off). Note that our method

1http://en.wikipedia.org/wiki/Sokoban.
2The collection is called “microban”; seehttp://users.

bentonrea.com/∼sasquatch/sokoban/. The STRIPS
encodings of the problems are available from us.



here uses the same iteration limit, and hence results differ
slightly from those reported above.

PDB heuristics constructed using the mean value per-
form generally worse. In the 15-Puzzle, the planner us-
ing this heuristic solves 66 problems, using an average of
657,380 node expansions, compared to 80 problems solved
and an average of 418,730 node expansions (over problems
solved by both versions) with the heuristic resulting from
our method. The heuristic based on mean value ranking is
not always worse, but if we count the number of “wins” for
the two heuristics (a “win” meaning a problem solved with
fewer expanded nodes), the ratio is1 : 7. The probability
of this outcome under the hypothesis of an equal winning
chance for both methods is less than10−11. In the Logistics
domain (12 problems from the IPC-2 set, size 7 to 12), both
planner versions solve the same set of instances, but, us-
ing the heuristic created by mean value ranking consistently
expands more nodes, 176,850 compared to 23,992, on aver-
age. The variance across repeated runs is also significantly
greater when using mean value ranking.

Impact of the Counting Approximation We compare the
results of using an estimate of the parametersNi in formula
(4) against the results of using the counting approximation.
As an estimate we usedNi = b̂i, whereb̂ is an estimate of
the branching factor, obtained in the course of the random
walk.

In the Sokoban domain, the heuristic obtained using esti-
mated parameters is better, expanding an average of 551,290
nodes compared to 679,650 for the heuristic that results
when using the counting approximation, across solved prob-
lems (both versions solve the same number of problems,
but slightly different sets). In the 15-Puzzle and Logis-
tics domains, however, the counting approximation gener-
ally results in a better heuristic: the average numbers of ex-
panded nodes are 655,530 and 483,490 for the 15-Puzzle,
and 24,153 and 23,557, for Logistics. Again, variance across
repeated runs is greater when using the estimated parameters
than when using the counting approximation.

Conclusions
Pattern database heuristics are currently one of the most
promising approaches for cost-optimal planning to improve
in a manner comparable to what the development of good
non-admissible heuristics have done for non-optimal plan-
ning. But for this promise to be realised, methods of auto-
matically selecting patterns that yield good PDB heuristics
are needed. This is true not only of planning: any appli-
cation of pattern databases in search can benefit from au-
tomatic construction techniques, especially when obtaining
the in-depth knowledge of a domain required for manually
constructing good PDB heuristics is infeasible.

Adopting the principle of pattern selection as a combi-
natorial optimisation problem, we proposed one concrete
method based on local search in the space of pattern col-
lections. The core of the method is a measure on the im-
provement of the heuristic quality which is derived from a
formula that predicts the search tree size. We showed em-
pirically that our measure results in better PDB heuristics

than when the improvement of the heuristic is measured us-
ing mean values.

Numerous possibilities for improving the method remain
to explore. For example, the search neighbourhood contains
only extensions formed by adding one variable to one pat-
tern in the current collection, but there are cases where it is
necessary to add more than one variable simultaneously to
get any improvement. Since there is an element of random-
ness in the search, general techniques for improving local
search such as restarts can also be expected to be useful.

Acknowledgements
NICTA is funded through the Australian government’sback-
ing Australia’s ability initiative, in part through the Aus-
tralian research council.

References
Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases.
In Proc. 6th European Conference on Planning (ECP’01),
13–24.
Edelkamp, S. 2006. Automated creation of pattern
database search heuristics. InProc. 4th Workshop on Model
Checking and Artificial Intelligence (MoChArt’06).
Felner, A.; Korf, R.; and Hanan, S. 2004. Additive pattern
database heuristics.Journal of AI Research22:279–318.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. InProc.
20th National Conference on AI (AAAI’05), 1163–1168.
Helmert, M. 2006.Solving Planning Tasks in Theory and
Practice. Ph.D. Dissertation, Albert-Ludwigs-Universität
Freiburg.
Holte, R.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic search.Artificial Intelligence
170:1123–1136.
Junghanns, A., and Schaeffer, J. 2001. Sokoban: En-
hancing general single-agent search methods using domain
knowledge.Artificial Intelligence129(1-2):219–251.
Korf, R., and Felner, A. 2007. Recent progress in heuris-
tic search: A case study of the four-peg Towers of Hanoi
problem. InProc. 20th International Joint Conference on
AI (IJCAI’07), 2324–2329.
Korf, R.; Reid, M.; and Edelkamp, S. 2001. Time com-
plexity of iterative-deepening-A∗. Artificial Intelligence
129:199–218.
Tomita, E.; Tanaka, A.; and Takahashi, H. 2004. The
worst-case time complexity for generating all maximal
cliques. InComputing and Combinatorics (COCOON’04),
volume 3106 ofLNCS, 161–170. Springer Verlag.
Wilson, E. 1927. Probable inference, the law of succession,
and statistical inference.Journal of the American Statisti-
cal Association22:209–212.


