Domain-I ndependent Construction of Pattern Database Heuristics for
Cost-Optimal Planning

Patrik Haslum and Adi Botea
NICTA & Australian National University
firstnane.| ast nane@i cta. com au

Blai Bonet
Universidad Simon Bolivar
bonet @ dc. ush. ve

Abstract

Heuristic search is a leading approach to domain-indepgnde
planning. For cost-optimal planning, however, existing ad
missible heuristics are generally too weak to effectivelidg

the search. Pattern database heuristics (PDBs), which are
based on abstractions of the search space, are currently one
of the most promising approaches to developing better ad-
missible heuristics. The informedness of PDB heuristics de
pends crucially on the selection of appropriate abstrastio
(patterns). Although PDBs have been applied to many search
problems, including planning, there are not many insights
into how to select good patterns, even manually. What con-
stitutes a good pattern depends on the problem domain, mak-
ing the task even more difficult for domain-independent plan
ning, where the process needs to be completely automatic and
general. We present a novel way of constructing good pat-
terns automatically from the specification of planning prob
lem instances. We demonstrate that this allows a domain-
independent planner to solve planning problems optimally i
some very challenging domains, including a STRIPS formu-

Malte Helmert
Albert-Ludwigs-Universitat Freiburg
hel mert @ nformati k. uni -frei burg. de

Sven Koenig
UsC
skoeni g@isc. edu

the problem domain, or even the problem instance. What
makes this problem hard is that the time and memory re-
quired to compute and store the pattern database limits
the size of the patterns that can feasibly be used. There
is some knowledge about what constitutes good quality
patterns for some specific domains where PDB heuristics
have been successfully applied.d. Holte et al. 2006;
Korf & Felner 2007), but this has been obtained by experi-
mentation and insight into the structure of the problemsThi

is not satisfactory for domain-independent planning, wher
the pattern selection process needs to be completely auto-
matic and general. That is the problem we attack.

Pattern databases have been applied to domain-
independent planning before: Edelkamp’s (2001) was
the first application of PDB heuristics in planning, and in-
troduced abstractions based on multi-valued state vasabl
Haslum, Bonet & Geffner (2005) refined the abstraction, by
the inclusion of global (mutex) constraints, obtaining mor
accurate heuristic estimates for patterns of a fixed sizey Th

also introduced the idea of an “incremental” construction
of the collection of patterns. However, their methods apply

: only to regression planning, and do not easily generalize
Introduction to grogres%ion (forvx?ard segrch). Thisis a weaykr?ess, since
Pattern databases (PDBs; Culberson & Schaeffer 1998) areprogression is in some domains inherently more efficient
one of the most successful approaches to creating admissi-and also easier to extend beyond STRIPS. Edelkamp (2006)
ble heuristics for single-agent search. PDB heuristicehav cast pattern selection as an optimization problem, and used
been used to solve a number of challenging search problems,a genetic algorithm, with the mean heuristic value as the
including both benchmark problems such as thé — 1)- fitness function, to find good solutions.
puzzle, and application problems, such as multiple sequenc Building on these works, our main contribution is a prin-
alignment (Felner, Korf, & Hanan 2004). PDBs are abstrac- cipled approach to pattern selection. The core of the ap-
tion heuristics, obtained by abstracting away all but a part proach is the measure of heuristic quality by which candi-
of the problem (thepatterr) small enough to be solved op- date collections of patterns are evaluted, based on estimat
timally for every state by blind exhaustive search. The re- ing what the size of the search tree would be for a given
sults are stored in a table in memory ({hettern database PDB heuristic using a result due to Korf, Reid and Edelkamp
and define an admissible and consistent heuristic functionb (2001). We show this measure to be more informed than the
mapping states into corresponding abstract states ane read mean heuristic value, proposed by Edelkamp. While the re-
ing their associated values from the table. Heuristic esti- sult has previously been used to explain experimentally ob-
mates from several abstractions can be combined by taking served differences in search performance arising from dif-
their maximum or, under certain conditions, their sum. ferent PDB heuristics (Holtet al. 2006), we develop it into

The main problem with PDB heuristics is that the qual- a practically usable method for constructing a good PDB.

ity of the heuristic depends crucially on the selection of a
collection of abstractions (patterns) that are approptiat

lation of the Sokoban puzzle.

Background

A propositional STRIPS planning problemwith additive

Copyright(© 2007, Association for the Advancement of Artificial
costs consists of a finite set of atoms, a finite set of actions,

Intelligence (www.aaai.org). All rights reserved.

a completely specified initial statey, and a goal condition,

G. Each actioru has a set of precondition atonmé(a)),
which must hold in a state for it to be applicable, and sets
of atoms made trueafid a)) and false §el(a)), respectively,
when it is applied. A plan is an applicable sequence of ac-
tions that leads to a state satisfying the goal conditiorerv
action has a costos{a), and the cost of a plan is the sum
of the costs of the actions in the plan.

Parallel to the propositional representation of planning
problems, we consider a representation by multi-valued sta
variables {.e. variables taking values from a finite set other
than the se{true false}), which are implicit in many plan-
ning problems. These implicit variables correspond to a par
ticular type of invariants, namely sets of atoms such that
exactly one atom in the set is true in any reachable state.
Methods for automatically extracting such “exactly-one” i
variants from STRIPS encodings have been proposed (
Helmert 2006). The rationale for the use of a multi-valued
state variable encoding as the basis for abstractions s tha
it allows PDBs to be represented much more compactly:
the PDB for a single variable with values has: entries,
whereas the corresponding PDB in a propositional encoding
would have2™ entries ™ — n of which are irrelevant, since
they correspond to states that can never be reached).

Abstractions and Pattern Databases An abstraction of

the problem is defined by a subsdt, of the state variables,

by simply removing from the preconditions and effects of
all actions, and from the initial state and goal, all varésbl
(atoms) not inA. We call the setd the pattern and denote

by h4(s) the minimum cost of reaching a goal state from
the abstract state corresponding to statie the state space

of the abstract problem: this is a lower bound on the cor-
responding cost in the state space of the original problem
P, and thush* is an admissible heuristic. It is also con-
sistent. The size of the abstract state space is bounded by
[I,ca|Dyl, whereD, is the domain of variable, i.e., the

set of values it can take. When this is sufficiently small, the
optimal cost functiorh(s) can be computed for all by

a breadth-first search in backward direction from all goal
states and stored in a table, which constitutes the pattern
database for pattera.

Constrained Abstraction Because the abstraction ig-
nores all conflicts involving variables not in the pattetn
states in the abstract space may become reachable eve
though they do not correspond to any reachable state in the
real state space. This often causes the heufistito under-
estimate the cost of reaching the goal from a stateore
than necessary and also weakens the ability of the heuris-
tic to detect deadlock states (states from which no goad stat
is reachable). Constrained abstraction (Haslum, Bonet, &
Geffner 2005) improves the accuracy/of by enforcing in

the abstraction invariant conditions that hold in the avédi
problem. Of particular interest are binary “at-most-one” i
variants,.e. static mutexes. In solving the abstract problem,
application of an action to an abstract state is disallovred i
the preconditions of the action and the abstract statelieget
violate a mutex. The resulting heuristic function remaies a
missible and consistent.

Collections of Patterns

Before we go into the question of how to select a collec-
tion of patterns, we establish some results about the hieuris
functions that can be constructed from such a collection.

The Canonical Heuristic Function An admissible
heuristic functionk is said todominateanother admissible
heuristich’ iff h(s) > h/(s), for all s. Clearly, if pattern
A is a subset of patter’, h® dominatesh*. Note that
this also means thai”* yields lower boundsif. is an
admissible heuristic) for optimal cost in the abstractestat
space defined by pattefs.

Given two PDB heuristica* andh?, the heuristic func-
tion h(s) max(h?(s), hP(s)) is also admissible and
clearly dominates both* andh” alone. If the set of ac-
tions that affect some variable id is disjoint from the
set of actions that affect any variable i, the heuristic
h(s) = h“(s) + hB(s) is also admissible. In this case,
we say the patterns agslditive(this additivity condition is
only sufficient, not necessary, but has the advantage that it
is easy to check). A set of patterns is additive, according
to this condition, iff all patterns in the set are pairwiseliad
tive. Clearly,h* (s)+h? (s) dominatesnax(h?(s), h(s)).
Note, however, thai4-?, i.e.the PDB for a pattern contain-
ing all variables in botd and B, dominates both the sum
and maximum oh4 andh®.

In general, given a collection of patterng}
{Pi,..., P;}, where the additivity condition stated above
holds between some of the patterns but not all, there is a
unique way of combining the corresponding PDB heuristics
into an admissible (and consistent) heuristic functiort tha
dominates all others. We will call this tleanonical heuris-
tic functionof the pattern collection and denote it hy .

Theorem1 LetC = {P,..., P} be a collection of pat-
terns, and letA be the collection of all maximal (w.r.t. setin-
clusion) additive subsets 6f: the canonical heuristic func-

tionof C' is
> hP(s)
Pes

h%(s) = max
SecA

The canonical heuristic can be simplified by removing from
it any sum over an additive sétfor which there is another
additive setS’ such that for every patterR; € S, P, C P;

for someP; € S’, as the sum ove$ will always be dom-

inated by the sum ove$’. Nevertheless, in the worst case,
the number of additive non-dominated subsets of a collec-
tion may be exponential.

Finding the maximal additive subsets of a collection of
patterns is equivalent to the problem of finding all maximal
(w.r.t. set inclusion) cliques in a graph, which requires expo-
nential time in the worst case because there can be exponen-
tially many such cliques. The algorithm by Tomita, Tanaka
& Takahashi (2004) runs in time polynomial in the number
of maximal cliques, which we found to be efficient enough.

Dominance in a Collection As noted above, if all vari-
ables in patterm are also included in patter®, »® domi-
natesh”. However, this does not always mean that pattern

A is of no use, since it may be additive with some patterns
with which B is not. In a collectiorC, a patternP is redun-
dantifh® = h¢—1P} whichis the case iP does not appear

in any of the non-dominated sums in the canonical heuristic
function. A pattern containing no variable mentioned in the
goal condition is always redundant.

Pattern Construction

The main question we address is the following: Given
a planning problem, with (multi-valued) state variables
{W1,...,V,}, and a limit on the amount of memory that
may be allocated to PDBs, how do we construct a collection
of patterns,C = {Pi,..., Py}, that respects the memory
limit and whose canonical heuristic function gives the best
search performance?

Estimating Search Effort

Korf, Reid and Edelkamp (2001) develop a formula for
the number of nodes expanded by a tree search (IDA*)
with given cost bound, using an admissible and consistent
heuristich for pruning. Their formula (slightly rewritten) is

S NewP(k) (1)

k=0,...,c

whereN; is the number of nodes whose accumulated gpst (
value) equalg and P is the so calleaquilibrium distribu-
tion of the heuristic functiorh: P (k) is the probability that
h(n) < k, wheren is a node drawn uniformly at random
from the search tree up to the cost limit Technically, the
formula holds only in the limit of large. The same formula
holds also for a graph search (A*), but in that case the equi-
librium distribution is defined by random drawing of nodes
uniformly over the state space up to cestinstead of the
search tree. In the presence of transpositions (multighespa
to the same state) these are not the same.

From our perspective; and N; are fixed. However, be-
cause we can influence the heuristic by our selection of pat-
terns, we can influenc®B. Thus, ideally, we want to select
a collection of patterns whose associated PDB heuristic re-
sults in an equilibrium distribution that minimizes (1).ofn
N;, P andc we can obtain an absolute measure of the qual-

are pattern collections and in which the neighbourhood of a
state is defined by a set of modifications to the collection. In
this space, we then search for a good solution.

The starting point of the search is the collection consist-
ing of one pattern for each goal variable, each containing
only that variable. (We assume that the memory limit is
large enough to fit this collection. This is a reasonable
assumption due to the way variables are created from the
planning problem.) From a given collection of patterns,
C ={h,..., P}, anew collectiorC’ can be constructed
by selecting a patterB; € C, avariabld/ ¢ P;, and adding
the new patteriP, ., = P,U{V} to the collection, provided
the total PDB size of the new collection does not exceed the
memory limit. This defines the search neighbourhoo@'of

As each neighbour of a pattern collectiGhcontainsC,
heuristic quality is non-decreasing. However, due to the
memory limit finding the true optimum requires, in general,
an exhaustive search through the space of pattern collec-
tions. As this is not feasible, we settle for finding a local
optimum, using a local search method. In our experiments
we have used simple hill climbing. The search starts with
the initial collection described above, repeatedly evaisia
the neighbourhood of expanded pattern collections and se-
lects the best neighbour to be the current collection in the
next iteration, ending when no extension, permitted by the
size limit, of the current collection results in a signifitan-
provement. PDBs corresponding to patterns in the collectio
are computed along the way.

Evaluating the Neighbourhood

Evaluating the neighbourhood is the critical step in our
search for a good pattern collection. We need to rank the
relative quality of the pattern collection in the neighbour
hood of the current collection, and determine whether any
of them offers a significant improvement.

Edelkamp (2006) suggests measuring the quality of a
heuristic by its mean value, which is also related to the
search effort but which is less discriminating than formula
(1), since heuristics with very different equilibrium dist
butions can have the same mean. The mean heuristic value
of a single PDB is easily obtained by a linear scan of the
PDB, but the mean value of the canonical heuristic function

ity of each candidate heuristic. These parameters are notig not so easily computed. Edelkamp solves this problem by

known to us, but can be estimated. However, we do not

forcing all PDBs to be additive, through cost relaxatiord an

need such an estimate of absolute quality. We only need to gyeraging their mean values, but this weakens the heuristic

determine which of two given heuristic functiohsndh’ is

and assumes that values of different PDBs are not correlated

better. Formula (1) suggests that the number of states whosea|sg, it is not clear how the mean is defined if the heuris-

heuristic value is increased is more important than the mag-
nitude of the increase, in particular increasing the egtitha
cost of states whose current estimate is small.

In fact, we will be considering an even more restricted
guestion: given a base heuristig, and two alternative im-
provements: andh’, which improves more oveér,?

Pattern Construction as Search

The problem of selecting the best collection of patterns,
subject to the “at least one goal variable” restriction and
the given memory limit, is a discrete optimization problem,

which we approach by defining a search space whose states

tic value of some states is infinitee., when deadlocks are
recognised by the heuristic.

As an alternative, we derive a relative measure of the qual-
ity of a pattern collection based on formula (1). A colleatio
C’ in the neighbourhood of’ differs from C only by the
addition of one new patterr, 1. Thus,hc’(s) can never
be less tharh®(s), for any states, sinceC’ subsumeg’.
Formula (1) predicts that the improvemeng,, the search
effort saved, by using"” instead ofC' is

)

whereP and P’ are the equilibrium distributions 6 and

re’, respectively. Suppose we draw a samplaf m nodes
uniformly at random from the search tree: the resulting esti
mate of (2) can be written as

VDS

i hO(n;)<k<hC (n;)

Nc—k (3)

SinceN,, the number of nodes in the search tree within cost
boundk, tends to grow exponentially in general, we can rea-
sonably assume tha(;, dominates) ;; _, N;, and approxi-
mate the above expression with

D

{ni | RC (ni)<h® (n;)}

Ne_pe (ni) (4)

This approximation greatly simplifies the evaluation, sinc
for each nodez; in the sample we only need to determine

it < (n;) > hC(n,), rather than having to determine the

exact value ofi% (n;). A possible additional simplifying
approximation is to ignore the weight that formula (4) at-
taches to each samplieg., simply counting the number of
nodes for whichh®” is greater thaC. (In the following,
we refer to this as theounting approximatio) The im-
pact of this approximation on heuristic quality is evaluhate
experimentally later.

Although the method outlined above is conceptually sim-
ple, there are a number of technicalities in it that are both
involved and important for the performance of the search,
which we discuss next.

Comparing h¢(n) and hS (n) For each node: in the
sample, we need to determine/if (n) > h%(n). Since
we maintain PDBs for the current collectidif] (n) is avail-
able by simply evaluating the heuristic function. Because
the collectionC' contains every pattern ifi” except for the
new patternP;. 1, h< (n) > hC(n) holds iff AF*+1 (n) >
hC(n) = Ypes—(pe,,) M (n), for some additive subset
S C (' thatincludesPy, 1.

The only unknown quantity in this condition is the value
of hP+1(n). This could be obtained by computing the cor-
responding PDB, but, particularly for large patterns, this
costly, and also wasteful if the number of samples to be eval-
uated is small, relative to the size of the PDB. As an alter-

native, we use a search in the abstract state space defined by~

patternP,; = P; U{V}. Because we have already a PDB
for P;, and also fo{V} if V is a goal variable, we have
good lower bounds for the abstract space, and the condition
that we are testing provides a, typically rather tight, uppe
bound. This combines to make the search quite efficient.

Sampling the Search Space In order to perform the esti-
mation to rank the neighbours of a pattern collectibnwve
need a random sample of nodas,drawn uniformly from
the search space up to cost bountf the space is a uniform
and complete tree with branching factoup to a depth of
at leastd, a uniformly sampled node within depthcan be
found by a random walk of length wherel = i with prob-

ability IZ,dT—Cbl that returns the node where the walk ends.

However, the search space associated with a planning prob-
lem, is typically neither uniform nor a tree, and there are
often dead-end stateisq| states from which no action is ap-
plicable). Moreover, we do not know what is the relevant
depth, since we do not know the solution.

Still, random walks is a simple method for efficiently sam-
pling the reachable state space, so we use it as an approxima-
tion. The solution depth is estimated by the current hearist
multiplied by a small constant (in our experimenishe-
cause the heuristic is underestimating. (For problems with
non-uniform cost, the depth estimate is adjusted by the av-
erage cost/depth ratio, which is also estimated during the
random walks.) To compensate for the imprecision of this
estimate, random walk lengths are binomially distributed
with the mean at the estimated depth. We constrain the ran-
dom walk so as to avoid some known deadlock states (states
for which the current heuristic value is infinite) that are ef
ficiently detectable, and on encountering a dead-end state
reset the walk to the initial state. Due to these compromises
our sample of states is not uniformly random over the search
space, but it is stillelevant in the sense that it provides an
estimate useful for ranking the neighbours of the curreit pa
tern collection.

Avoiding Redundant Evaluations Neighbourhood eval-
uation is the most time consuming part o the search. We
use two techniques to avoid wasting time on evaluating un-
promising neighbours.

The first is based on a static analysis: Adding a variable
V to patternP will only improve over the value of,” if
the variable directly influences any of those in the pattern.
The causal graph is a common tool for analysing influences
among variables in a planning problem: a varialilecan
influence a variablé” if some action that changés has a
precondition or effect of¥’. Due to our use of constrained
abstraction)/’ also, potentially, influences the pattefnif
some action that changes a variablé?imas a precondition
in P that is mutex with some value &f’. Variables that can
not influence a pattern are not considered for extending it.

The second is statistical: After eaéh samples, we cal-
culate for each candidate collection a confidence inteoral f
its “score” (.e. how much it improves on the current pattern
collection). If the upper end of the estimated interval for a
collectionC” is less than the lower end of the interval for a
collectionC”, it is unlikely thatC” will turn out better than
, SO we do not evaluaté” any further. For the count-
ing approximation we use Wilson’s (1927) formula for the
confidence interval, since the normal approximation is too
imprecise when the estimated value is very small.

Ending the Search The pattern search comes to an end
when no extension allowed by the size limit improves over
the current pattern collection, but in many cases the point a
which the effort of the search exceeds the value of the gain
in heuristic accuracy occurs much earlier. Thus it is useful
to consider more aggressive cut-off criteria, such asilmit
the number of search iterations or setting a threshold and
disregarding any extension with a smaller improvement. In
the counting approximation of formula (4), the score of an
extension is simply the fraction of samples for which the

Problem || Optimal Nodes Total | Constr. exhibit much |arger variance.

= 'e”%tg N ztg:z Z;rgz Sokoban The Sokoban puzzles a very difficult single-
= - T i 70 agent search problem, even for non-optimal domam-speqflc
” = 89380 | 1995 | 1892 solvers (Junghanns & Schageffer 2(_)01). The problem in-
5 133 || 105236 | 1647 | 1349 stances we use are a collection of “introductory” problems,
78 135 || 3002044 | 7682 | 336.6 meant to be relatively easy for a human to solve, but hard
83 164 || 971728 | 3928 | 2889 enough to challenge any domain-independent platiRa-

87 149 66710 | 1240 | 117.3 moving problems that are too easy (solved by blind search)
95 25 5232 | 321.6 | 320.6 and too hard (not solved by any planner we tried, including
97 164 33559 | 286.9 | 2835 several state-of-the-art suboptimal planners), leavesdld-

102 149 || 114078 | 149.0| 1364 lems, with sizes ranging from 4 to 12 stones and (known) op-
106 205 || 658844 | 8239 | 7527 timal solution lengths from 25 to 290 moves. The planner is
107 38 89985 | 1272.0 | 1252.8 able to solve 28 of these. The average (across solved prob-
115 110 || 238867 | 3946 | 366.8 lems) number of expanded nodes per instance is 679,650,
118 172 || 892622 | 209.3| 163.9 and the average runtime is 600.4 seconds, of which 508.2
121 125 || 143407 5473 | 5306 (84.6%) is spent constructing the PDB heuristic. Table 1
125 125 || 187526 1345| 1167 presents the results in detail.

126 87 2088379 | 1014.2 695.8

129 99 36342 | 2429 | 239.0 Sokoban is an example of a domain where forward search
130 102 || 142576 | 261.6 | 245.2 is inherently more effective than regression: regression
131 76 || 170039 | 065.0 | 048.4 search using a variety of admissible heuristics (including
134 244 || 218202 6954 6701 those proposed by Haslum, Bonet, & Geffner 2005) does
137 177 || 3745013 | 1208.2 | 692.3 not solve any of our 40 test problems, or even all problems
140 290 || 1097563 | 1116.8 | 963.6 solved by blind forward search.

141 134 || 103788 | 1830 | 1704 The15-Puzzle The(n? —1)-Puzzle is another extensively
ﬂz i;i 1658337;‘(‘)‘ 33(2);': 35:2‘; studied benchmark in the literature on search, and while
5 35 T 297034 Tosos | 6508 domain-specific solvers are able to solve 24- and even some
=) 55 80475 | 1683 1602 35-Puzzle problems (Felner, Korf, & Hanan 2004), the 15-

Puzzle is still a challenge for a domain-independent planne

Table 1: Summary of solved Microban problems. Unsolved e use Korf’s set of 100 problems. The planner is able to

problems in the test set are numbers 93, 99, 105, 108, 112 —SOIve 93 problems, using an average of 331,220 node expan-

114. 117. 123. 133. 138. and 145. sions and 1,439.7 seconds, 1,380&%) spent constructing
T T the PDB heuristic, per problem.

The 15-Puzzle domain is well suited to regression:
Haslum, Bonet & Geffner (2005) demonstrate that their
PDB heuristics yield good results, over a subset of 24 of
Korf’s problems. However, our pattern selection generates
better heuristics for the same PDB size limit: over the same
. set of problems their total number of nodes expanded in

Experiments search is 2,559,508 whereas we obtain a total number of
We evaluate the quality of the pattern collections found by 549,147 — less than one fourth.

the method outlined above by using the resulting heuristic Neighbourhood Evaluation by Mean Value We compare
in a cost-optimal forward search planner. The search for a the results of our pattern selection method against using
plan is done using A*. We compare the result of using our mean heuristic value, as suggested by Edelkamp (2006), to
method of evaluating pattern collections with the result of rank pattern collections in the search neighbourhood. The
using the mean heuristic value, as suggested by Edelkampmean value of the canonical heuristic function is estimated
(2006). Additionally, we test the impact of the counting ap- by sampling. Due to the problems with defining a sensi-
proximation. ble mean value when some heuristic values are infinite, we
To evaluate the planner we use STRIPS encodings of two restrict the comparison to the 15-Puzzle and Logistics do-
hard search problems, Sokoban and the 15-Puzzle, as wellmains, which have no (reachable) deadlock states. In these
as the Logistics domain. Except where otherwise noted, re- experiments we use a fixed limit on the number of itera-
sults are obtained using the counting approximation ared siz tions in the pattern search (set to roughly equal that result
limits of 20 million entries for the PDB collection and 2 mil- ing when using our threshold cut-off). Note that our method
lion entries for any single PDB. Total memory use is limited
to 1 GB; all problems reported unsolved are due to the A*
search exhausting memory. Since the method is randomised, http://en. wi ki pedi a. or g/ wi ki / Sokoban.
values reported are the median of 3runs. Variationintheag- 2The collection is called “microban”; sefet t p: / / users.
gregated statistics between runs is relatively small (stmo bent onr ea. conf ~sasquat ch/ sokoban/. The STRIPS
+10% from the median), but a small number of instances encodings of the problems are available from us.

heuristic value of the extension is greater than that of the
current collection, thus normalised @, 1]. This makes it
possible to chose a general threshold value.

here uses the same iteration limit, and hence results differ than when the improvement of the heuristic is measured us-
slightly from those reported above. ing mean values.

PDB heuristics constructed using the mean value per- Numerous possibilities for improving the method remain
form generally worse. In the 15-Puzzle, the planner us- to explore. For example, the search neighbourhood contains
ing this heuristic solves 66 problems, using an average of only extensions formed by adding one variable to one pat-
657,380 node expansions, compared to 80 problems solvedtern in the current collection, but there are cases whege it i
and an average of 418,730 node expansions (over problemsnecessary to add more than one variable simultaneously to
solved by both versions) with the heuristic resulting from get any improvement. Since there is an element of random-
our method. The heuristic based on mean value ranking is ness in the search, general techniques for improving local
not always worse, but if we count the number of “wins” for ~ search such as restarts can also be expected to be useful.

the two heuristics (a “win” meaning a problem solved with
fewer expanded nodes), the ratiolis 7. The probability

of this outcome under the hypothesis of an equal winning
chance for both methods is less thHam 1. In the Logistics
domain (12 problems from the IPC-2 set, size 7 to 12), both
planner versions solve the same set of instances, but, us-
ing the heuristic created by mean value ranking consistentl
expands more nodes, 176,850 compared to 23,992, on aver-
age. The variance across repeated runs is also significantly
greater when using mean value ranking.

Impact of the Counting Approximation We compare the
results of using an estimate of the parameférin formula

(4) against the results of using the counting approximation
As an estimate we usel; = b, whereb is an estimate of
the branching factor, obtained in the course of the random
walk.

In the Sokoban domain, the heuristic obtained using esti-
mated parameters is better, expanding an average of 551,290
nodes compared to 679,650 for the heuristic that results
when using the counting approximation, across solved prob-
lems (both versions solve the same number of problems,
but slightly different sets). In the 15-Puzzle and Logis-
tics domains, however, the counting approximation gener-
ally results in a better heuristic: the average numbers of ex
panded nodes are 655,530 and 483,490 for the 15-Puzzle,
and 24,153 and 23,557, for Logistics. Again, variance acros
repeated runs is greater when using the estimated parameter
than when using the counting approximation.

Conclusions

Pattern database heuristics are currently one of the most
promising approaches for cost-optimal planning to improve
in a manner comparable to what the development of good
non-admissible heuristics have done for non-optimal plan-
ning. But for this promise to be realised, methods of auto-
matically selecting patterns that yield good PDB heursstic
are needed. This is true not only of planning: any appli-
cation of pattern databases in search can benefit from au-
tomatic construction techniques, especially when olgini
the in-depth knowledge of a domain required for manually
constructing good PDB heuristics is infeasible.

Adopting the principle of pattern selection as a combi-
natorial optimisation problem, we proposed one concrete
method based on local search in the space of pattern col-
lections. The core of the method is a measure on the im-
provement of the heuristic quality which is derived from a
formula that predicts the search tree size. We showed em-
pirically that our measure results in better PDB heuristics

Acknowledgements

NICTA is funded through the Australian governmeisck-
ing Australia’s ability initiative, in part through the Aus-
tralian research council.

References

Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligenc&4(3):318-334.

Edelkamp, S. 2001. Planning with pattern databases.
In Proc. 6th European Conference on Planning (ECP;01)
13-24.

Edelkamp, S. 2006. Automated creation of pattern
database search heuristicsPioc. 4th Workshop on Model
Checking and Artificial Intelligence (MoChArt’'06)

Felner, A.; Korf, R.; and Hanan, S. 2004. Additive pattern
database heuristicdournal of Al Researc@2:279-318.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planningPtac.
20th National Conference on Al (AAAI'Q8)163—-1168.

Helmert, M. 2006.Solving Planning Tasks in Theory and
Practice Ph.D. Dissertation, Albert-Ludwigs-Universitat
Freiburg.

Holte, R.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic seakcfificial Intelligence
170:1123-1136.

Junghanns, A., and Schaeffer, J. 2001. Sokoban: En-
hancing general single-agent search methods using domain
knowledge Atrtificial Intelligencel29(1-2):219-251.

Korf, R., and Felner, A. 2007. Recent progress in heuris-
tic search: A case study of the four-peg Towers of Hanoi
problem. InProc. 20th International Joint Conference on
Al (IJCAI'07), 2324—-2329.

Korf, R.; Reid, M.; and Edelkamp, S. 2001. Time com-
plexity of iterative-deepening-A Atrtificial Intelligence
129:199-218.

Tomita, E.; Tanaka, A.; and Takahashi, H. 2004. The
worst-case time complexity for generating all maximal
cligues. InComputing and Combinatorics (COCOON’'04)
volume 3106 oL NCS 161-170. Springer Verlag.

Wilson, E. 1927. Probable inference, the law of succession,
and statistical inferencelournal of the American Statisti-
cal Associatior22:209-212.

