
Automated Creation of Pattern Database Search

Heuristics

Stefan Edelkamp

Computer Science Department
University of Dortmund

stefan.edelkamp@cs.uni-dortmund.de

Abstract. Pattern databases are dictionaries for heuristic estimates
storing state-to-goal distances in state space abstractions. Their effec-
tiveness is sensitive to the selection of the underlying patterns. Espe-
cially for multiple and additive pattern databases, the manual selection
of patterns that leads to good exploration results is involved.

For automating the selection process, greedy bin-packing has been
suggested. This paper proposes genetic algorithms to optimize its out-
put. Patterns are encoded as binary strings and optimized using an ob-
jective function that predicts the heuristic search tree size based on the
distribution of heuristic values in abstract space.

To reduce the memory requirements we construct the pattern
databases symbolically. Experiments in heuristic search planning indi-
cate that the total search efforts can be reduced significantly.

1 Introduction

The ultimate goal for an efficient exploration is the automated creation of (admis-
sible) search heuristics. By applying state space abstractions, heuristic estimates
correspond to solutions in simplified problem spaces. The underlying problem
graph is abstracted, e.g., in a form that nodes are contracted or new edges are
inserted. Such abstractions are homomorphisms, i.e., for each path in the con-
crete state space there is a corresponding path in the abstract one. This notion
of abstraction matches the one used in verification for abstraction refinement [4]
and predicate abstraction [1,45].

Gaschnig [17] proposed that the cost of solutions can be computed by exact
solution in abstract space. He observed that search with abstract information
can be more time-consuming than with breadth-first search. Voltorta [49] has
proven this conjecture, showing that heuristic search algorithms that explore
state space abstractions for each encountered state from scratch (and that do
not memorize abstract states) cannot possibly be better than blind search [20].
Absolver [40] was the first system to break the barrier imposed by his theorems.
In order to reduce the number of revisits in abstract state one either has to
memorize abstract state information on-the-fly or precompute it for the entire
search space. Pattern databases [5] correspond to complete scans of the (inverted)
abstract space before applying the search algorithm in the concrete space. A

S. Edelkamp and A. Lomuscio (Eds.): MoChart IV, LNAI 4428, pp. 35–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

36 S. Edelkamp

mixed strategy (between memorizing and precomputing) is considered in [30]
and revisited in [27].

The success story of searching with pattern databases is long, starting with
first optimal solutions in Rubik’s Cube [35] and large savings in sliding-tile
puzzles [5,36]. Applied for the multiple sequence alignment problem, pattern
databases correspond to lookup tables for alignments of a smaller number of
sequences [38,52]. In finding the best parse of a sentence [33], a pattern database
entry correlates to the cost of completing a partial parse; the abstraction is de-
rived by simplifying the grammar. TSP with asymmetric costs and precedence
constraints has been analyzed by [24] using pattern database techniques. Pat-
tern database heuristics have been applied for co-operative planning in computer
games [47], where many agents search for individual paths but are allowed to
help each other to succeed. First successful applications of pattern databases for
verification are due to [11] (explicit-state model checking), [44] (symbolic model
checking), and [39] (real-time model checking). In all approaches, even though
the construction is automated, patterns were provided manually, such that, in
essence, pattern selection remains a domain-dependent feature.

As they operate at the limit of main memory, a compact and space-efficient
representation of pattern databases is essential. This paper exploits a space-
efficient representation of pattern databases based on BDDs [3], which – by
sharing binary state vectors – can lead to large memory savings. Instead of
transforming an already constructed database, we apply a construction process
that is throughout symbolic. Nonetheless, the main objective of this paper is to
address the problem of automated pattern selection for an improved search. We
embed our approach in domain-independent action planning, where automated
pattern selection is mandatory. In this research area, the use of multiple [29]
(often disjoint [36]) databases is frequent. So far, only greedy bin packing al-
gorithms have been applied that terminates with the first established pattern
set [7,21].

The number of possible patterns for selection is large. In case of state space
abstractions that include don’t cares in the state vector, the complexity is expo-
nential in the number of remaining vector entries. In case of general relaxations of
the state vector (e.g. by data abstraction, mapping variable domains to smaller
sets) the number of possible choices almost becomes intractable. So even for
the choice of a single pattern, we are facing a hard combinatorial optimization
problem. If multiple abstractions are used, the number of choices is even worse.

In order to predict their pruning1 effect, pattern databases have to be con-
structed. Unfortunately, the efforts for constructing pattern databases are high,
as their sizes (measured in the number of abstract states) are large.

Especially in combinatorial problems with large state spaces and unknown
structures, optimization algorithms adapted from nature – such as evolutionary

1 Pattern database heuristics do not prune the exploration in the strong sense in that
they eliminate transitions from the state space. If no error/goal is present, then
there is no search reduction. On the other hand, if there is, then the enforced order
of expansion can save many states to be looked at.

Automated Creation of Pattern Database Search Heuristics 37

strategies or swarm optimization techniques [6] – are recommended. Given the
discrete structure of the pattern selection problem, we have chosen genetic algo-
rithms [26], which are widely used and adapt nicely: the proposed encoding of
patterns into chromosomes is accessible for a human, and we can expect to obtain
insights to important schemas for pattern selection. There are already some re-
ports on attempts to unify planning and evolutionary computing [2,18,51,41,48],
but all are concerned about plan finding (or plan refinement) and none of them
addresses the problem of the automated creation of search heuristics.

The paper is structured as follows. First we review pattern databases as ap-
plied in optimal heuristic search planning. Then we turn to genetic algorithms for
the automated inference of the patterns. Starting with the encoding of patterns
into chromosomes, we present the design of genetic operators for the pattern se-
lection problem. Experiments report on improving the mean heuristic value and
on reducing the resulting search efforts for a selection of challenging planning
domains. Finally, we draw conclusions and indicate further research avenues.

2 Pattern Databases in Planning

Action planning refers to a world description in logic2. A number of atomic
propositions, atoms for short, describe what can be true or false in each state of
the world. By applying operations in a world, we arrive at another world where
different atoms might be true or false. Usually, only few atoms are affected by
an operator, and most of them remain the same.

Let AP be the set of atoms. A planning problem (in STRIPS notation) [16]
is a finite state space problem P =< S,O, I,G >, where S ⊆ 2AP is the set of
states, I ∈ S is the initial state, G ⊆ S is the set of goal states, and O is the set
of operators that transform states into their successors. We often have that G is
described by a simple list of atoms. Operators O ∈ O have preconditions pre(O),
and effects (add(O), del(O)), where pre(O) ⊆ AP is the precondition list of O,
add(O) ⊆ AP is its add list and del(O) ⊆ AP is its delete list. Given a state S
with pre(O) ⊆ S, its successor S′ = O(S) is defined as S′ = (S\del(O))∪add(O).

2.1 Admissible Heuristics in Planning

Admissible heuristics for planning underestimate the shortest path distance of
the current state to the goal. They are important to guarantee optimality in
heuristic search algorithms like A* and IDA*. The max-atom heuristic [22] is an
approximation of the optimal cost for solving a relaxed problem in which the
delete lists are ignored. Its extension max-pair improves the information without
loosing admissibility, approximating the cost of atom pairs. The heuristic h+ [25]
is another extension to max-atom defined as the length of the shortest plan that

2 For the sake of brevity, the presentation of the paper restricts to propositional plan-
ning. However, the design of planning pattern databases is applicable to complex
planning formalisms too.

38 S. Edelkamp

solves the relaxed problem with ignored delete lists. The heuristic is admissible,
but solving relaxed plans is computationally hard.3

2.2 Explicit-State Planning Pattern Databases

Explicit-state planning pattern databases as proposed by [7,21] refer to state
space abstraction, where some atoms are omitted from the problem description.

The basic idea for computing a heuristic with pattern databases is to ana-
lyze the abstraction of the concrete state space prior to the search [5]. In this
abstract state space, a (complete) backward exploration (starting with the ab-
stract goal) computes accurate goal distances and stores them in a lookup table4.
This then information guides the concrete search process. More formally, the ab-
straction [34] of a planning problem P = < S,O, I,G > wrt. a set of atoms
R is defined as P|R = < S|R,O|R, I|R,G|R > with S|R = {S ∩ R | S ∈ S},
G|R = {G ∩ R | G ∈ G}, and O|R = {O|R | O ∈ O}, where O|R for O ∈ O is
given as (pre(O) ∩ R, add(O) ∩ R, del(O) ∩ R). As the goal distance in abstract
state space drop by not more than 1, pattern databases are consistent, leading to
monotone cost functions in A* [42]. The principle of abstracting atoms has been
extended to (automatically inferred and mutually exclusive) atom groups [7]. The
approach reflects a multi-variate (finite domain) variable encoding of a state [23].
As an example, in Blocksworld the variable on(X, a) (where X represents any
available block a, b, c, or d), encodes the atoms on(d, a), on(c, a), on(b, a) and
on(a, a). As only one block can lay on top of a, all atoms in a state variable
(group) are mutually exclusive. Variables are distributed into patterns, where
each pattern corresponds to an abstraction of the state space: abstract states
are assignments of atoms to state variables of the chosen pattern. Using this
approach each concrete state is mapped to an abstract state. As seen above the
projection extends to operators, intersecting the precondition, add and delete list
with the pattern. The selection of patterns that lead to the best search reduction
is computationally hard and critically influences the quality of the estimate [21].

For multiple pattern databases [29], in each abstraction i, i ∈ {1, . . . , k},
and for each state S we compute estimated costs hi(S). The maximum hm(S) =
maxk

i=1 hi(S) is a consistent estimate, the cumulation ha(S) =
∑k

i=1 hi(S), how-
ever, is not necessarily admissible, since in general we cannot expect that each
operator contributes to only one pattern database abstraction. In case an ad-
missible heuristic is obtained by adding the values, we call the databases dis-
joint [36]. In order to resolve the admissibility problem in general, we have to
grant that each operator has zero costs for all but one pattern databases. This
induces that the backward in abstract space operates on a weighted problem
graph. For this particular single-source shortest-paths problem, we adapt BFS.
In each BFS level, each zero-cost operator is fired until a fixpoint is reached.
3 The heuristic h+ can, however, efficiently be approximated by the number of oper-

ators in a parallel plan that solves the relaxed problem. The applied approximation
sacrifices the admissibility of the estimate making it inadequate for optimal planning.

4 As inverse operator application is not always immediate, it is possible to apply back-
ward search to the inverse of the state space graph generated in forward search [11].

Automated Creation of Pattern Database Search Heuristics 39

2.3 Symbolic Planning Pattern Databases

The main limitation for applying pattern databases in practice is the restricted
amount of (main) memory. Many strategies for leveraging the problem have been
proposed. Symmetries allow reusing pattern databases [5], while lookups in dual
pattern databases additionally apply to permutation problems [15]. Compressed
pattern databases [14] approximate abstract states-to-goal distances. Given an
upper bound on the optimal goal distance in the concrete state space, pattern
database construction can be pruned [52]. On-demand pattern databases [13]
suspend and resume a backward A* exploration of the abstract space.

A space-saving alternative for pattern databases that allow sharing of the
state vector is the trie data structure. In a trie, each path from the root to
a leaf corresponds to a scan of the state vector. Tries are commonly used in
pattern databases for the multiple sequence alignment problem [46]. States with
same prefixes share their representations. Tries can be multi-variate (each branch
corresponds to a state vector entry of finite domain) or binary (each path corre-
sponds to the binary representation of the state vector). Tries can be contracted
by merging edges.

The main advantage of using BDDs [3] is an efficient and unique representation
for sets of states. Intuitively, BDDs are binary tries in which further reduction
rules have been applied to obtain a directed and acyclic graph structure. More
precisely, a BDD represents the characteristic function of a set of states, which
evaluates to 1 if and only if the binary state vector is a member of that set. The
characteristic function is identified with the set itself.

Transitions are also formalized as relations, i.e., as sets of tuples of prede-
cessor and successor states, or, more precisely, as the characteristic function of
such sets. This allows to compute the image in form of a relational product.
It conjoins the state set (formula) with the transition relation (formula) and
quantifies the predecessor variable. This way, all states are determined, that can
be reached by applying one action to a state in the input set. Iterating the pro-
cess starting with the characteristic function of the initial state yields a symbolic
implementation of BFS. The application of A* with BDDs has been initially pro-
posed by [12], extensions are found in [31] (branching partitioning), [43] (weak
heuristics), and [19] (ADDs). All implementations rely on small edge weights.

Symbolic pattern databases [8] are pattern databases that have been con-
structed symbolically for a latter lookup in either symbolic or explicit-state
heuristic search. The bi-directional definition of the transition relation allows
to change the search direction by quantifying the posterior variables set in the
relational product. Each state set (in a breadth-first/shortest paths layer) is
efficiently represented by a corresponding characteristic function. Different to
the compression of the state set by compiling the outcome of an explicit-state
pattern database, the symbolic construction operates on the compressed rep-
resentation of the state and the action sets. External symbolic planning pat-
tern databases [53] are symbolic planning databases that additionally exploit
secondary storage devices such as hard disks to lessen the RAM load during
construction and search.

40 S. Edelkamp

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1e+10

0 5 10 15 20 25 30

BDD Nodes
States

Fig. 1. Effect of symbolic pattern database construction

A better memory performance often favors symbolic to explicit-state pattern
database construction: Fig. 1 displays an example of a typical Blocksworld prob-
lem instance. The number of BDD nodes is by far smaller than the number of
represented states. Moreover, BDD nodes are small,5 while the explicit-state
sizes grow with size the problem instance. The mean heuristic value (for both
cases) is 22.16. Besides memory savings the key performance of symbolic pattern
databases for the purpose of this paper are time savings. For example, the above
pattern database contains 27.22 billion entries generated in 109 seconds. Com-
pared to explicit-state search, this corresponds to about 250 million expanded
states per second.

3 Automated Pattern Selection

We have indicated that finding good patterns is involved, as there are many
possible choices, especially if multiple pattern databases have to be considered.
Manual pattern selection is tedious and implies that the planning process in-
evitably becomes problem-dependent. So far, automated pattern selection is a
rather unresolved challenge, even if some recent progress has been made.

For explicit-state construction of multiple pattern databases, one has simpli-
fied the problem of finding a suitable partition to the bin-packing problem [7,21].
The general idea is to distribute state variables into bins in such a way that a
minimal number of patterns is used; a state variable is added to an already ex-
isting bin, until the (expected) abstract state space size exceeds main memory.

5 BDD nodes frequently consume a small number of bytes for encoding the level, the
0- and 1-successor and some auxiliary information like a hash value and markings.

Automated Creation of Pattern Database Search Heuristics 41

Procedure GA
t ← 0

P (t) ← Initialize

Evaluate(P (t))

while (κ(P (t)))

P ′(t) ← Recombination(P (t))

P ′′(t) ← Mutation(P ′(t))
Evaluate(P ′′(t))
P (t+1) ← Selection(P ′′(t))
t ← t + 1

Fig. 2. Standard genetic algorithm

Adding a variable to the pattern corresponds to a multiplication of its domain
size to the (already computed) abstract state size (if possible). As a result, the
bin-packing variant needed for automated pattern selection is based on multi-
plying variable domain sizes (rather than adding). Bin-packing is NP-complete,
but efficient approximations like the first- or best-fit have been used.

For the implementation of automated pattern selection we adapt a genetic
algorithm (GA) [26]. A generic implementation using the evolutionary operations
for evaluation, recombination, mutation, and selection is shown in Fig. 2, where
κ is the termination criterion, and t is the current iteration.

Representation. Patterns are represented as binary chromosomes of size p×n,
where n is the number of atoms (groups) and p ≤ n is the number of active pat-
terns. In the columns, state variables are indexed, while in the rows patterns are
selected. Therefore, a chromosome represents the distribution of state variables
into multiple pattern databases. Fig. 3 illustrates an example: in the first pat-
tern the groups 1, 5, 6, 8 and n are included, whereas in the second pattern the
groups 3, 5 and 7 are present.

Chromosomes are valid6 if all patterns respect the memory threshold M (the
bin size). Formally speaking, if vi denotes the set of atoms in state variable i,
i ∈ {1, . . . , n}, and ci,j is a bit indicating whether or not variable vi is selected
in pattern pj, j ∈ {1, . . . , p}, then for all j we have

∏
1≤i≤n ci,j · |vi| ≤ M . (We

assume that at least one variable is selected in each pattern, i.e., for all j we
have

∑n
i=1 ci,j > 0). For generating disjoint pattern databases, we additionally

impose the condition that in each column there is exactly one 1, i.e., for all i
we have

∑p
j=1 ci,j = 1. Since the columns > 3 have more than one bit set, the

chromosome in Fig. 3 is not disjoint.7

6 Invalid chromosomes are assigned to a bad fitness value and discarded by Darwin’s
evolutionary rule for the survival of the fittest.

7 As planning operators can modify more than one state variable at a time, in differ-
ence to the set of well-studied (n2 − 1)-puzzle pattern databases [36] this condition
is only a necessary but not a sufficient condition for disjointness. As checking dis-
jointness based on the pattern selection may be involved, for each operator we assign
cost 1 to only one abstraction.

42 S. Edelkamp

...

1

2

3

4

5

6

7

8

p

· · ·
1 2 3 4 5 6 7 8 n

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

· · ·

...
...

...

10 0 0

0 000 0

0

0 0 0

0

00

0

1 1 1 1

11 1

11111 1

1

1

Fig. 3. Bitvector representation of a chromosome

Initialization. For the initialization phase we could generate random chromo-
somes, but we found that the amount of work to find an acceptable partitioning
by performing a randomized assignment of the chromosomes is by far larger as
with prior bin packing with no significant advantage within the overall search
process. Therefore, we initialize the chromosomes with bin packing. To avoid
all chromosomes of the initial population to be identical, we choose a random
permutation to the atom groups prior to their automated partitioning into pat-
terns. This leads to comparably good but different distributions of groups into
patterns and a feasible initial population for the genetic algorithm.

Recombination. The motivation of recombination of two parent chromosomes
is the hope, that the good properties of the one parent combines well with the
good properties of the other. One of the simplest techniques that we looked at is
crossover : the parent chromosomes exchange parts of their patterns. If the two
parents have a different number of patterns, so do the two children.

Mutation. For mutation chromosome bits are flipped with a small probability.
This corresponds to extending or reducing the corresponding abstract space. For
our case, we had to allow the addition or deletion of entire patterns. In the bin
packing analogy of multiple pattern partition, adding a pattern corresponds to
opening a bin, and deleting a pattern corresponds to closing a bin.

Selection. During selection an enlarged population (as produced by either re-
combination or mutation) is truncated to its original size based on the fitness
value(s). The normalized fitness evaluation for the population is interpreted as
a distribution function, which governs the selection process for the next popula-
tion. Chromosomes with a better fitness are chosen with higher probability.

Objective Functions. The objective function plays a central role in a genetic
algorithm. It defines a fitness to determine the evolutionary strength of chromo-
somes. The construction of a meaningful objective function is often difficult, like
in our case, where the conditions for good patterns are hardly accessible.

Automated Creation of Pattern Database Search Heuristics 43

A fundamental question concerns the relationship between the contents of a
pattern database, and the number of nodes expanded when the heuristic is used
to guide the search. Korf [35] gives first insights in such performance predictions
of pattern databases: he characterizes the effectiveness of a heuristic h by its
expected value h (the mean) over the problem space. The main line of reasoning
is the following: if the heuristic value of every state was equal to its expected
value h, then a search to depth d would be equivalent to searching to depth
d − h without a heuristic, since the priority for every state would be its depth
plus h. This means that in most search spaces, a linear gain in h corresponds to
an exponential gain in the search.

For the pattern selection problem we conclude that the higher the average
heuristic value, the better the corresponding pattern database. As a consequence,
we compute the mean heuristic value for each database. For one pattern database
PDB we compute

h =
max∑

h=0

h · |{u ∈ PDB | h∗(u) = h}|
|PDB| ,

where h∗(u) is the accurate abstract goal distance stored for the abstract state
u, and where the size of a pattern database (layer) is determined by counting
the number of accepting paths in the BDD.8 For multiple pattern databases, we
have k distributions. As an example, the distributions of the heuristic estimates
for three pattern databases are shown in Fig. 4 in the form of histograms. For
computing the evolutionary strength for an entire chromosome we compute the
mean heuristic value for each of the databases individually and cumulate (or
maximize) the outcome. More formally, if PDBi is the i-th pattern database,
i ∈ {1, . . . , k}, then the additive fitness of a chromosome is computed as

fitness(c) =
k∑

i=1

maxi∑

hi=0

hi · |{u ∈ PDBi | h∗
i (u) = hi}|

|PDBi| .

Using the mean heuristic estimate is not the only choice. We have also experi-
mented with a derivate not based on the number of states that share the same
heuristic value, but on the number of BDD nodes to represent them. Unfortu-
nately, the results were consistently weaker.

A Note on Search Tree Prediction. Applying the mean heuristic value for
the fitness extends to the formula for search tree prediction [37]. It approximates
E(N, c, P), the expected number of nodes expanded by IDA* up to depth c, given
a problem-space tree with Ni nodes of cost i, and a heuristic characterized by
the equilibrium distribution P . The formula denotes that in the limit of large c,
we expect E(N, c, P) =

∑c
i=0 NiP (c − i) nodes to be generated. It has already

been used for the analysis of pattern database performance [28] and to explain
anomalies that many small pattern databases are often more effective than few
8 There are linear time algorithms for performing model counting [3].

44 S. Edelkamp

Fig. 4. Histograms of heuristic values

big ones of same total size [29]. However, the growth of search trees for general
problems as addressed in action planning is not immediate [32]. Hence, we prefer
h for the fitness evaluation.

4 Experiments

For implementing genetic algorithms we adapt the library GAlib9 [50] to our
hybrid (explicit-state and symbolic) planner MIPS [9]. One advantage is that it
is portable to different operating systems. Another gain is that there is already a
2D chromosome data structure that satisfies our requirement. It was sufficient to
provide an objective function. A fitness function could be derived automatically,
using the fitness scaling approach. As a consequence, only the genetic operations
for recombination mutation and selection are to be configured. These configura-
tions have been implemented without modifying the existing source code for the
standard genetic algorithm.

After some initial testing10 we turned off recombination completely. This ac-
tually simplifies the genetic algorithm to a randomized local search strategy. As
indicated above, the mutation operator adds and deletes groups to an existing
pattern and allows to extend patterns in a disjoint partition. For the automated
construction of both explicit-state or symbolic pattern databases, the maximum
size of the abstract state spaces is taken as an additional parameter – actually
the only information that has to be provided manually.

4.1 Explicit-State Pattern Databases

In a first test suite, we studied explicit-state pattern databases constructed with
greedy bin packing and optimized genetic algorithms (with different parameters).
9 http://lancet.mit.edu/galib-2.4/

10 We conducted all experiments on a 3 GHz Linux PC. Time in CPU seconds was
limited to 1,800; space was limited to 1 GB.

Automated Creation of Pattern Database Search Heuristics 45

Fig. 5. Explicit pattern databases in Logistics

Fig. 6. Explicit pattern databases in DriverLog

The aim was to learn about the parameter setting of genetic algorithms in
planning domains, as they are known to be sensitive to parameter selection.

We use several runs applying the mean of the heuristic value as a comparison
guideline. As the iterated tests were involved, we depict the change in the explo-
ration efficiencies for some interesting domains only. The horizontal axes denote
the choice of parameters as follows.

Label Meaning
5 Bin Packing with a memory threshold of 25 abstract states
5,50,5 GA with a memory threshold of 25 abstract states, 50 epocs, 5 genes

In Fig. 5 the setup time, the search time (in seconds, left label) and the number
of expansions (right label) for different genetic parameters settings in the Logistics

46 S. Edelkamp

domain are shown. As we can see, even when including the entire construction
time for all pattern databases, with genetic algoirthms there is some substantial
gain compared to ordinary bin packing. As a general finding we observe that for a
better guidedance, longer construction time is needed. In some cases, however, the
construction time is so large that there is no gain in exploration. In the DriverLog
domain (Fig. 6) the influence is present, but less apparent.

Automatically selecting the parameters of the genetic algorithm in such a way
that the pre-computation efforts are acceptable with number of expansions that
is small enough remained a challenge. In the next set of experiments, we try to
scale-up the approach by using BDDs.

4.2 Symbolic Pattern Databases

For experimenting with symbolic pattern databases, we choose various prob-
lems from international planning competition (IPC-2, IPC-3, IPC-5).11 For the
construction of symbolic pattern databases we choose a population size of 5,
and a number of 20 epocs (resulting in at most 100 pattern databases to be
constructed and evaluated; some of them were eliminated due to size and state
variable constraints). The random seed was fixed for all experiments.

The initial population the genetic algorithm is computed as follows. We first
randomize the order of variables in the state vector. Next, we apply the bin-
packing strategy. 12 The search algorithm we applied is symbolic A* search with
full duplicate elimination. We have added the heuristic estimates.

In Table 1 symbolic exploration results for comparing greedy bin-packing
with genetic pattern selection in the benchmark problems are shown. Headings
read as follows: 2l is the abstract state space size limit; the searching time ts
is compared to the total running time 13 In other words, the setup time t − ts
for the genetic construction covers the time for computing all pattern databases
during the optimization process. The additional time for pattern optimization
contributes to the gain in the quality of the heuristic estimate, measured in h,
the mean heuristic estimate of the first (greedy bin-packing) or best surviving
(genetic algorithm) pattern.

As the Logistics and DriverLog domains were less complex in the explicit
than in the symbolic case, we have recognize that the application of symbolic
pattern databases pays off (cf. Fig. 1). We also observe that pattern optimiza-
tion generally leads to much better mean heuristic values and to smaller search
times. When scaling the problems the savings in search dominate the additional
workload during construction and take over to the total search time.

11 For domains from IPC-4 good exploration results of symbolic pattern databases are
already known [10].

12 As there is no unshuffled bin packing result, invoking search without optimization
can produce better results than with optimization.

13 Total time includes the parsing efforts of the planning problem and pattern database
construction. Time for grounding the domain is not counted as we apply an individual
but same program to both strategies.

Automated Creation of Pattern Database Search Heuristics 47

Table 1. Symbolic A* search with and without genetic optimized pattern databases

Greedy Bin Packing GA-Optimization

problem 2l length images h ts t length images h ts t

logistics-4-1 10 19 63 9.28 0.39 0.77 19 63 8.57 0.37 0.79
logistics-6-1 20 14 42 21.9 0.39 0.77 14 39 20.34 0.30 1.01
logistics-8-1 20 44 166 26.32 11.98 19.92 44 44 29.51 5.7 1.42
logistics-10-1 30 - - - - - 42 351 38.82 33.78 85.69
logistics-12-1 30 - - - - - 69 826 51.49 138.02 498.76

blocks-9-0 30 30 79 8.86 0.47 52.51 30 358 20.03 8.89 19.4
blocks-10-0 40 - - - - - 34 692 25.15 8.53 34.94
blocks-11-0 40 - - - - - 32 1,219 24.20 49.30 58.44
blocks-12-0 40 - - - - - 34 942 25.36 101.95 104.55

zeno-2 10 6 6 6.37 0.17 0.55 6 14 3.83 0.19 0.57
zeno-4 10 8 19 5.74 0.27 0.73 8 14 3.83 0.19 0.57
zeno-6 20 11 24 6.6 0.64 1.21 11 14 8.58 0.58 1.51
zeno-10 25 - - - - - 22 23 15.7 43.12 190.56
zeno-11 25 - - - - - 14 37 15.06 15.11 833.16

driverlog-9 25 22 109 12.9 86.76 87.59 22 107 15.3 52.46 72.25
driverlog-11 25 - - - - - 19 110 10.67 34.48 44.60
driverlog-13 35 - - - - - 26 143 13.7 553.01 778.03

openstack-1 20 23 96 3.71 0.51 1.29 23 116 5.06 0.60 3.04
openstack-3 20 23 96 3.71 0.51 1.29 23 110 5.40 0.60 3.02
openstack-6 30 20 65 4.99 70.38 96.17 20 39 5.44 52.42 216.19
openstack-7 30 - - - - - 20 38 6.88 31.05 484.19

pipesworld-2 20 12 91 6.53 0.77 2.82 12 82 7.01 0.23 4.72
pipesworld-4 20 11 34 4.75 4.37 6.44 11 50 6.63 1.55 4.62
pipesworld-6 20 10 23 5.44 3.31 5.44 10 29 7.33 0.95 4.82
pipesworld-8 20 11 25 6.12 55.08 60.07 11 29 7.57 6.79 12.58
pipesworld-10 53 - - - - - 19 203 10.97 45.30 97.27

5 Conclusion

We have seen a flexible attempt to optimize pattern database exploration prior
to the overall search process using genetic algorithms14. The approach optimizes
the partition of multi-variate variables into disjoint patterns. We showed that
pattern optimization is essential and optimization with genetic algorithms can
increase not only the search time, but also the total run time. While the greedy
bin packing strategy often runs out of memory, improved pattern selection with
genetic algorithm scales better and can find solutions where bin packing fails.

Given the time and space efficiency of symbolic search, we could construct
and evaluate many large pattern databases in a limited amount of time. Driven

14 To the author’s knowledge, optimization of patterns has not been considered before.
We are aware some (unpublished) work on the automated generation of pattern
databases by Holte and Hernádvölgyi. Their approach enumerates all possible (un-
subsumed) pattern partitions that are not subsumed by already considered ones.

48 S. Edelkamp

by the theory of search tree prediction, we have chosen the mean heuristic value
as a fitness function. For the evaluation of each chromosome we have computed
an entire set of pattern databases. Faster construction of larger databases favors
a symbolic construction, and the exploration gains obtained in the experiments
are promising. The encoding of pattern partition in a 2D gene allows experts to
reason on the structure of good patterns and to perform pattern fine-tuning.

Constructing the pattern databases for each fitness evaluation consumes a con-
siderable amount of time, especially if pattern databases become large. Future
work will address learning of the fitness functions in smaller instances for boot-
strapping in a genetic algorithm for larger instances. We also plan to consider
alternative optimization methods as the search efficiency varies a lot in different
runs. This suggests to apply randomized local search with random restarts [32].

Acknowledgements. Stefan Edelkamp is supported by DFG in the projects
Heuristic Search (Ed 74/3) and Directed Model Checking (Ed 74/2).

References

1. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate
abstraction of c programs. In: SIGPLAN Conference on Programming Language
Design and Implementation, pp. 203–213 (2001)

2. Brie, A.H., Morignot, P.: Genetic planning using variable length chromosomes. In:
ICAPS, pp. 320–329 (2005)

3. Bryant, R.E.: Symbolic manipulation of boolean functions using a graphical rep-
resentation. In: ACM/IEEE Design Automation Conference, pp. 688–694 (1985)

4. Clarke, E.M., Grumberg, O., Long, D.: Model checking and abstraction. ACM
Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

5. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(4),
318–334 (1998)

6. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2005)

7. Edelkamp, S.: Planning with pattern databases. In: ECP, pp. 13–24 (2001)

8. Edelkamp, S.: Symbolic pattern databases in heuristic search planning. In: AIPS,
pp. 274–293 (2002)

9. Edelkamp, S.: Taming numbers and durations in the model checking integrated
planning system. Journal of Artificial Intelligence Research 20, 195–238 (2003)

10. Edelkamp, S.: External symbolic heuristic search with pattern databases. In:
ICAPS, pp. 51–60 (2005)

11. Edelkamp, S., Lluch-Lafuente, A.: Abstraction in directed model checking. In:
ICAPS-Workshop on Connecting Planning Theory with Practice (2004)

12. Edelkamp, S., Reffel, F.: OBDDs in heuristic search. In: KI, pp. 81–92 (1998)

13. Felner, A., Alder, A.: Solving the 24 puzzle with instance dependent pattern
databases. In: Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607,
pp. 248–260. Springer, Heidelberg (2005)

14. Felner, A., Meshulam, R., Holte, R.C., Korf, R.E.: Compressing pattern databases.
In: AAAI, pp. 638–643 (2004)

15. Felner, A., Zahavi, U., Schaeffer, J., Holte, R.: Dual lookups in pattern databases.
In: IJCAI, pp. 103–108 (2005)

Automated Creation of Pattern Database Search Heuristics 49

16. Fikes, R., Nilsson, N.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

17. Gaschnig, J.: A problem similarity approach to devising heuristics: First results.
In: IJCAI, pp. 434–441 (1979)

18. Godefroid, P., Khurshid, S.: Exploring very large state spaces using genetic algo-
rithms. STTT 6(2), 117–127 (2004)

19. Hansen, E.A., Zhou, R., Feng, Z.: Symbolic heuristic search using decision dia-
grams. In: Koenig, S., Holte, R.C. (eds.) SARA 2002. LNCS (LNAI), vol. 2371,
Springer, Heidelberg (2002)

20. Hansson, O., Mayer, A., Valtora, M.: A new result on the complexity of heuristic
estimates for the A* algorithm (research note). Artificial Intelligence 55, 129–143
(1992)

21. Haslum, P., Bonet, B., Geffner, H.: New admissible heuristics for domain-
independent planning. In: AAAI, pp. 1163–1168 (2005)

22. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. pp. 140–149
(2000)

23. Helmert, M.: A planning heuristic based on causal graph analysis. In: ICAPS, pp.
161–170 (2004)

24. Hernádvölgyi, I.T.: Automatically Generated Lower Bounds for Search. PhD thesis,
University of Ottawa (2003)

25. Hoffmann, J., Nebel, B.: Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14, 253–302 (2001)

26. Holland, J.: Adaption in Natural and Artificial Systems. PhD thesis, University of
Michigan (1975)

27. Holte, R.C., Grajkowski, J., Tanner, B.: Hierarchical heuristic search revisited. In:
Zucker, J.-D., Saitta, L. (eds.) SARA 2005. LNCS (LNAI), vol. 3607, pp. 121–133.
Springer, Heidelberg (2005)

28. Holte, R.C., Hernádvögyi, I.T.: A space-time tradeoff for memory-based heuristics.
In: AAAI (1999)

29. Holte, R.C., Newton, J., Felner, A., Meshulam, R., Furcy, D.: Multiple pattern
databases. In: ICAPS, pp. 122–131 (2004)

30. Holte, R.C., Perez, M.B., Zimmer, R.M., Donald, A.J.: Hierarchical A*: Searching
abstraction hierarchies. In: AAAI, pp. 530–535 (1996)

31. Jensen, R.M., Bryant, R.E., Veloso, M.M.: SetA*: An efficient BDD-based heuristic
search algorithm. In: AAAI, pp. 668–673 (2002)

32. Junghanns, A.: Pushing the Limits: New Developments in Single-Agent Search.
PhD thesis, University of Alberta (1999)

33. Klein, D., Manning, C.: A* parsing: Fast exact Viterbi parse selection. In: Human
Language Technology Conference of North American Chapter of the Association
for Computational Linguistics (2003)

34. Knoblock, C.A.: Automatically generating abstractions for planning. Artificial In-
telligence 68(2), 243–302 (1994)

35. Korf, R.E.: Finding optimal solutions to Rubik’s Cube using pattern databases.
In: AAAI, pp. 700–705 (1997)

36. Korf, R.E., Felner, A.: Chips Challenging Champions: Games, Computers and
Artificial Intelligence. In: chapter Disjoint Pattern Database Heuristics, pp. 13–
26. Elsevier, Amsterdam (2002)

37. Korf, R.E., Reid, M., Edelkamp, S.: Time Complexity of Iterative-Deepening-A*.
Artificial Intelligence 129(1–2), 199–218 (2001)

38. Korf, R.E., Zhang, W., Thayer, I., Hohwald, H.: Frontier search. Journal of the
ACM 52(5), 715–748 (2005)

50 S. Edelkamp

39. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an ai plan-
ning heuristic for directed model checking. In: Valmari, A. (ed.) Model Checking
Software. LNCS, vol. 3925, Springer, Heidelberg (2006)

40. Mostow, J., Prieditis, A.E.: Discovering admissible heuristics by abstracting and
optimizing. In: IJCAI, pp. 701 – 707 (1989)

41. Muslea, I.: A general-propose AI planning system based on genetic programming.
In: Genetic Programming Conference (Late Breaking Papers), pp. 157–164 (1997)

42. Pearl, J.: Heuristics. Addison-Wesley, London (1985)
43. Qian, K., Nymeyer, A.: Heuristic search algorithms based on symbolic data struc-

tures. In: ACAI, pp. 966–979 (2003)
44. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction

and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)

45. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

46. Schroedl, S.: An improved search algorithm for optimal multiple sequence align-
ment. Journal of Artificial Intelligence Research 23, 587–623 (2005)

47. Silver, D.: Cooperative pathfinding. In: Conference on Artificial Intelligence and
Interactive Digital Entertainment, pp. 117–122 (2005)

48. Spector, L.: Genetic programming and AI planning systems. In: AAAI, pp. 1329–
1334 (1994)

49. Valtorta, M.: A result on the computational complexity of heuristic estimates for
the A* algorithm. Information Sciences 34, 48–59 (1984)

50. Wall, M.: GAlib – A C++ Library of Genetic Algorithm Components. Mas-
sachusetts Institute of Technology (2005)

51. Westerberg, H., Levine, J.: Optimising plans using genetic programming. In: ECP,
page Poster (2001)

52. Zhou, R., Hansen, E.: Space-efficient memory-based heuristics. In: AAAI, pp. 677–
682 (2004)

53. Zhou, R., Hansen, E.: External-memory pattern databases using structured dupli-
cate detection. In: AAAI (2005)

	Automated Creation of Pattern Database Search Heuristics
	Introduction
	Pattern Databases in Planning
	Admissible Heuristics in Planning
	Explicit-State Planning Pattern Databases
	Symbolic Planning Pattern Databases

	Automated Pattern Selection
	Experiments
	Explicit-State Pattern Databases
	Symbolic Pattern Databases

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

