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Important: for submission, consult the rules at the end of the exercise. Non-
adherence to these rules might lead to a penalty in the form of a deduction of marks
or, in the worst case, that your submission will not be corrected at all.

The files required for this exercise are in the directory exercise-f of the course repository (https:
// github. com/ aibasel-teaching/ planopt-hs21 ). All paths are relative to this directory.
Update your clone of the repository with git pull to see the files. In the virtual machine,
/vagrant/plan-opt-hs21 is the repository.

Exercise F.1 (3+1 marks)(Lecture F1)

You are in charge of a large Mediterranean fish farm that produces prawns. Once every catching
season, you need to decide what part of the prawn population you will catch and commercialize,
and what part you will leave in the farm and allow to reproduce. Assuming that the prawn
population in any given season is denoted by x, the reward you get if you commercialize y ≤ x
prawns is 10y, whereas the number of prawns on the fish farm if you leave z ≤ x prawns to
reproduce is a random variable. For the sake of simplicity,1 we assume that with probability 0.7,
the population next season will be d1.4ze (a standard year), with probability 0.2, it will be d1.8ze
(a great year!), and with probability 0.1 it will be d0.9ze (a not-so-good year).

(a) Assume you start with a population of 1000 prawns, and you value the reward of one catching
season twice as high as the reward for the next one (after all, climate change is likely to turn
your fish farm into a tropical wave pool for tourists soon enough). You might also assume
that your fish farm has a maximum capacity of N . Formalize your fish farm as a Markov
Decision Process M = 〈S,A, T,R, s0, γ〉, clearly and formally defining each of the elements
of the problem: what are the states in your model, what the possible actions, what are
the transition probabilities and rewards, what is the initial state, and what is the discount
factor.

(b) Discuss the influence of the discount factor in this scenario. To do so, answer the following
two questions:

• In general, what changes about your business model if you increase the discount factor?

• How does the optimal policy of your fish farm change when you increase the discount
factor?

1The actual law governing the growth of prawn population is more complex, but results nonetheless in a prob-
ability distribution, which is what interests us here.



Exercise F.2 (1+2+4+4+1 marks)(Lectures F2, F3, F4)

Consider the discounted reward MDP T = 〈S,A,R, T, s0, γ〉 with

• S = {s0, s1, s2, s3},

• A = {a0, a1, a2, a3},

• R(s, a0) = 0 for all s ∈ S
R(s, a1) = 1 for all s ∈ S
R(s, a2) = 5 for all s ∈ S
R(s, a3) = 10 for all s ∈ S,

• T (s0, a0, s1) = 1
T (s1, a0, s0) = 1

3 and T (s1, a0, s2) = 2
3

T (s2, a0, s0) = 2
3 and T (s2, a0, s3) = 1

3
T (s1, a1, s0) = 2

3 and T (s1, a1, s2) = 1
3

T (s2, a2, s0) = 1
T (s3, a3, s0) = 1
T (s, a, s′) = 0 for all other s, s′ ∈ S and a ∈ A

• γ = 0.9.

(a) Provide T graphically. Make sure that it is clear which numbers represent rewards and which
numbers represent transition probabilities, and make sure that it is clear which outcomes
belong to which action.

(b) Provide the LP that encodes T as an input file for SoPlex. Then solve the LP and provide
the objective value.

Instructions on how to install and use SoPlex are in the file soplex-readme.txt.

(c) Consider the policy π0 that maps si to ai for all si ∈ S and perform two iterations of
policy iteration, starting with initial policy π0. Use iterative policy evaluation in the policy
evaluation step and round state-values V̂π0

(si) and V̂π1
(si) for i ∈ {1, 2, 3, 4} to two decimals

(round the final result for each state-value, not intermediate results). Use ε = 0.235 to
terminate policy evaluation or after computing V̂ 4

πi
(si), whichever comes first. Use V̂ 0

π0
(s0) =

10, V̂ 0
π0

(s1) = 11, V̂ 0
π0

(s2) = 13, and V̂ 0
π0

(s3) = 18 for iterative policy evaluation, and use the
final state-values of the first iteration as initial state-values for the second iteration.

Provide all intermediate values of iterative policy evaluation under π0 and π1 in the two
tables below (insert maxs∈S |V iπk

(s)− V i−1πk
(s)| in the last column) as well as the computed

policies π1 and π2. Does policy iteration terminate after the second iteration or does it
perform further iterations?

π0(s0) = a0 π0(s1) = a1 π0(s2) = a2 π0(s3) = a3

i V̂ iπ0
(s0) V̂ iπ0

(s1) V̂ iπ0
(s2) V̂ iπ0

(s3) max. change

0 10 11 13 18 n/a

1

2

3

4



π1(s0) = π1(s1) = π1(s2) = π1(s3) =

i V̂ iπ1
(s0) V̂ iπ1

(s1) V̂ iπ1
(s2) V̂ iπ1

(s3) max. change

0 n/a

1

2

3

4

π2(s0) = π2(s1) = π2(s2) = π2(s3) =

(d) Perform five iterations of value iteration with initial values V̂ 0(s0) = 10 and V̂ 0(s) = 0 for
s ∈ {s1, s2, s3}. Provide the values for all states after each iteration in the table below, and
provide the policies that result from the values after the 1st, 2nd, 3rd, 4th and 5th iteration.
Would value iteration need to perform further iterations after the 5th iteration?

i V̂ i(s0) V̂ i(s1) V̂ i(s2) V̂ i(s3)

0 10 0 0 0

1

2

3

4

5

π1(s0) = π1(s1) = π1(s2) = π1(s3) =

π2(s0) = π2(s1) = π2(s2) = π2(s3) =

π3(s0) = π3(s1) = π3(s2) = π3(s3) =

π4(s0) = π4(s1) = π4(s2) = π4(s3) =

π5(s0) = π5(s1) = π5(s2) = π5(s3) =

(e) Assume you run a variant of value iteration that terminates after a fixed number of iterations
n. What happens with V̂n(s0) when n→∞? Justify your answer.



Exercise F.3 (4 marks)(Lecture F4)

Recall the SSP example from the lecture where an agent should move from an initial state to the
goal state in a grid world. The figure below shows the grid with the initial state s0 and the goal
state s?. Possible moves are N, E, S, and W for the four directions, but actions are only applicable
if they would not lead the agent out of the grid. In the goal state, no actions are applicable. The
numbers in the grid indicate the probabilities p of an action to succeed, i.e., to move the agent
in the intended direction. With probability 1 − p, the agents stays where she is. The costs of
applying an action is 1 in all cells except in the striped cell (2, 3), where it is 3.
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In this exercise, you have to implement a variant of asynchronous value iteration for the grid
world problem, which picks a single random state in each iteration that is updated in place and
terminates based on a fixed number of iterations. Complete all functions with a TODO in the file
asynchronous-vi/asynchronous-vi.py. You do not need to modify or submit other files.
You can make yourself familiar with the problem representation by looking at asynchronous-

vi/instance.py. Executing that file prints the probabilities and costs of all cells as well as the
applicable actions for all states and the resulting successors.
To test your implementation, you can execute the file asynchronous-vi/asynchronous-vi.py.
It takes an optional argument --num-iterations which specifies for how many iterations to run
the algorithm (the default is 300).
We recommend to implement the functions in the following order, since you should never need to
use a function further down in the order in any of the earlier functions.

• compute q value: compute the Q-value (called action-value in the lecture) for a given state
and action and given state-values.

• compute greedy action and q value: for a given state and given state-values, compute the
greedy (=best) applicable action and the resulting Q-value of that action.

• bellman update in place: perform an in-place Bellman update of the state-value of a ran-
dom non-goal state of the SSP.

• asynchronous value iteration: perform asynchronous value iteration.



Submission rules:

• Exercise sheets must be submitted in groups of three students. Please submit a single copy
of the exercises per group (only one member of the group does the submission).

• Create a single PDF file (ending .pdf) for all non-programming exercises. Use a file name
that does not contain any spaces or special characters other than the underscore “ ”. If you
want to submit handwritten solutions, include their scans in the single PDF. Make sure it is
in a reasonable resolution so that it is readable, but ensure at the same time that the PDF
size is not astronomically large. Put the names of all group members on top of the first page.
Either use page numbers on all pages or put your names on each page. Make sure your PDF
has size A4 (fits the page size if printed on A4).

• For programming exercises, only create those code textfiles required by the exercise. Put
your names in a comment on top of each file. Make sure your code compiles and test it.
Code that does not compile or which we cannot successfully execute will not be graded.

• For the submission: if the exercise sheet does not include programming exercises, simply
upload the single PDF. If the exercise sheet includes programming exercises, upload a ZIP
file (ending .zip, .tar.gz or .tgz; not .rar or anything else) containing the single PDF and
the code textfile(s) and nothing else. Do not use directories within the ZIP, i.e., zip the files
directly.

• Do not upload several versions to ADAM, i.e., if you need to resubmit, use the same file
name again so that the previous submission is overwritten.


