
Planning and Optimization

M. Helmert, G. Röger
C. Büchner, T. Keller, S. Sievers

University of Basel
Fall Semester 2021

Exercise Sheet B
Due: October 28, 2021

Important: for submission, consult the rules at the end of the exercise. Non-
adherence to these rules might lead to a penalty in the form of a deduction of marks
or, in the worst case, that your submission will not be corrected at all.

The files required for this exercise are in the directory exercise-b of the course repository (https:
// github. com/ aibasel-teaching/ planopt-hs21 ). All paths are relative to this directory.
Update your clone of the repository with git pull to see the files. In the virtual machine,
/vagrant/plan-opt-hs21 is the repository.

Exercise B.1 (2+2+2+2 marks)(Lecture B1)

Look up the following 4 planners in planner abstracts of the deterministic tracks of the Interna-
tional Planning Competition (IPC) 2014 and 2018. Categorize each of them in a similar fashion
as the examples in lecture B1. That is, list their problem class (satisficing or optimal), algorithm
class (explicit search, SAT planning or symbolic search), the design choices of their respective class
(for example the search direction for explicit search or the encoding for a SAT solver) and other
aspects that stand out.

(a) Dynamic Gamer (2014)

(b) Fast Downward Stone Soup 2014

(c) OLCFF (2018)

(d) Freelunch (2018)

You can find planner abstracts on the competition websites reachable from the ICAPS website
(https://www.icaps-conference.org/competitions/).

Exercise B.2 (4 marks)(Lectures B2, B3, and B4)

Consider the STRIPS planning task Π = 〈V,O, I, γ〉 where

• V = {A,B,C,D};

• O = {o1, o2, o3, o4} with

– o1 = 〈A,¬B ∧ C〉,
– o2 = 〈B,A ∧D〉,
– o3 = 〈A ∧D,B〉, and

– o4 = 〈A,B ∧ ¬C〉;

• I = {A 7→ >, B 7→ >, C 7→ ⊥, D 7→ ⊥}

• γ = C ∧D

Provide the breadth-first search tree resulting from regression search for this problem up to depth 3.
You may prune parts of the search by marking duplicates and subsumptions as such. Provide the
resulting plan if you find a solution.



Exercise B.3 (2+1 marks)(Lecture B3 for (a), Lecture B4 for (b))

(a) What is the regression regr(ϕ, oi) of the formula ϕ = (a∨ b) through the following operators
oi? Simplify all results as much as possible.

• o1 = 〈c, aB b〉
• o2 = 〈c,¬aB b〉
• o3 = 〈d, a ∧ ¬b〉
• o4 = 〈c,¬a ∧ ¬b〉

(b) Based on your result to (a), which of the four operators are potentially useful in a regression
search that expands search state ϕ, and which ones should be pruned? Justify your answer
briefly.

Exercise B.4 (3+3 marks)(Lecture B3)

(a) Provide a family of planning tasks Πn such that the size of Πn is polynomial in n, and
such that a breadth-first search with regression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with progression needs to expand an exponential
number of search nodes in n. Assume the progression search prunes all duplicate states and
the regression prunes a state if its formula logically entails the formula of its parent. Explain
why your family of tasks satisfies the requirements.

(b) Provide a family of planning tasks Πn such that the size of Πn is polynomial in n, and such
that a breadth-first search with progression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with regression needs to expand an exponential
number of search nodes in n. Assume the same pruning as in exercise (a). Explain why your
family of tasks satisfies the requirements.

Exercise B.5 (1+4+1+1)(Lecture B5)

In this exercise, your task is to define a sequential SAT-encoding for the planning task 〈{a, b, c}, {a 7→
1, b 7→ 0, c 7→ 0}, {o1, o2},¬a ∧ c〉 with o1 = 〈a, b ∧ (bB ¬a)〉 and o2 = 〈a ∧ b, c〉.

(a) Provide the clauses that encode the initial state and the goal (use time T for the latter).

(b) Provide all clauses that encode the transitions for some time step i. Simplify the clauses
and omit those that simplify to > (you don’t need to provide intermediate results for the
simplification). Annotate each remaining clause as precondition clause, positive or negative
effect clause or positive or negative frame clause.

(c) The clauses from Exercises B.5a) and B.5b) do not suffice for a complete SAT-encoding of
the planning task. Provide all missing clauses, again parametrized for some time step i.

(d) What is the smallest horizon T for which the resulting formula for the given planning task
is satisfiable? Justify your answer.

Exercise B.6 (3+5 marks)(Lecture B6)

For this exercise, you need to have minisat (minisat.se/MiniSat.html) installed. We provide a
script in the repository to do so. Simply run the following command: ./install-minisat.sh

(a) The file pyperplan/src/search/sat.py already contains a complete implementation of a
SAT search using a sequential encoding. Comment out the lines that add the positive
frame clauses to the set of clauses. Explain why this is possible without making the SAT
search compute incorrect solutions. Furthermore, investigate what effect on performance
this change has experimentally. To do so, compare the runtime of the program with and
without these clauses on the tasks in the directories blocks, gripper and logistics. You



don’t have to run the search longer than two minutes. Provide the runtimes in a table with
one row for each task and with one column for each of the encodings. Describe the differences
you observe and explain them.

You can run the code with the command
./pyperplan/src/pyperplan.py -s sat-seq gripper/prob01.pddl

(The domain file will be automatically inferred.)

Please note that the wallclock time printed by pyperplan can be quite off. Instead, please use
the linux built-in time command by prepending it to the above command to obtain system
wallclock time in seconds (example output: “real 0m32,177s”).

(b) The file pyperplan/src/search/sat.py contains an incomplete method build parallel model.
Please complete the implementation using the parallel encoding presented in the lecture. You
don’t have to change any of the other existing methods for this task.

Test your implementation on the same tasks as in part (a), using the command
./pyperplan/src/pyperplan.py -s sat-par gripper/prob01.pddl.
As for part (a), provide a table with runtimes. What is the effect of the parallel encoding
compared to the sequential one that you used in part (a)? Plase explain the reason for this
effect.

Exercise B.7 (2+2 marks)(Lecture B7)

For both parts, you do not need to show intermediate results, but partial marks may be awarded
for wrong results with correct intermediate steps.

(a) Consider the following ordered BDD:

u

v v

w w

x x

w

x

0 1 0 1 0 1

0 1

0 1

0
1

01 0 1

0 1

0 1

0 1

0

1

Provide the equivalent reduced ordered BDD.

(b) Provide a reduced ordered BDD for the formula

ϕ = ((u ∨ v) ∧ ¬w) ∨ (u ∧ (v ∨ (¬w ∧ u))) ∨ (u ∧ v ∧ ¬w) ∨ (v ∧ w)

You may choose any order.

Submission rules:

• Exercise sheets must be submitted in groups of three students. Please submit a single copy
of the exercises per group (only one member of the group does the submission).



• Create a single PDF file (ending .pdf) for all non-programming exercises. Use a file name
that does not contain any spaces or special characters other than the underscore “ ”. If you
want to submit handwritten solutions, include their scans in the single PDF. Make sure it is
in a reasonable resolution so that it is readable, but ensure at the same time that the PDF
size is not astronomically large. Put the names of all group members on top of the first page.
Either use page numbers on all pages or put your names on each page. Make sure your PDF
has size A4 (fits the page size if printed on A4).

• For programming exercises, only create those code textfiles required by the exercise. Put
your names in a comment on top of each file. Make sure your code compiles and test it.
Code that does not compile or which we cannot successfully execute will not be graded.

• For the submission: if the exercise sheet does not include programming exercises, simply
upload the single PDF. If the exercise sheet includes programming exercises, upload a ZIP
file (ending .zip, .tar.gz or .tgz; not .rar or anything else) containing the single PDF and
the code textfile(s) and nothing else. Do not use directories within the ZIP, i.e., zip the files
directly.

• Do not upload several versions to ADAM, i.e., if you need to resubmit, use the same file
name again so that the previous submission is overwritten.


