
Planning and Optimization

M. Helmert, G. Röger
C. Büchner, T. Keller, S. Sievers

University of Basel
Fall Semester 2021

Exercise Sheet A
Due: October 14, 2021

Important: for submission, consult the rules at the end of the exercise. Non-
adherence to the rules will lead to your submission not being corrected.

The files required for this exercise are in the directory exercise-a of the course repository (https:
// github. com/ aibasel-teaching/ planopt-hs21 ). All paths are relative to this directory.
Update your clone of the repository with git pull to see the files. In the virtual machine,
/vagrant/plan-opt-hs21 is the repository.

Exercise A.1 (0.5+0.5+0.5+0.5 marks)(Lecture A2)

Characterize the following planning domains by describing if they are

• fully or partially observable,

• deterministic or stochastic,

• instantaneous or durative, and

• whether the planning agent is the sole source of change or there are exogenous events.

(a) Route planning

(b) Solitaire

(c) Cooking a meal

(d) Autonomous car

Note: Since these properties depend on the explicit model of each domain, make reasonable as-
sumptions and justify your answer if you feel the need for explanation.

Exercise A.2 (3+2+3+2 marks)(PDDL Intro from Exercise Session 1 for (a) and (b), Lecture
A5 for (c) and (d))

Consider the following planning task:

• You are trapped in the cellar of a building with a switch board full of light switches. In the
rooms above you there is a vampire (V). Luckily, there also is a vampire slayer (S) in those
rooms. To keep things simple, we consider only room layouts that are circular corridors
where each room has a clockwise and an anti-clockwise neighbor.

• The vampire avoids the light: whenever the light in the vampire’s room is switched on, it
moves to a neighboring room. If one of the neighboring rooms is dark, it will move there,
preferring the anti-clockwise one if both are dark. If both neighboring rooms are bright, it
will move clockwise.

• The slayer tries to stay in the light. If the light in her room is switched off, she moves to a
neighboring room. She moves clockwise if that room is bright and anti-clockwise otherwise.

• If the two of them meet in a room they will fight. The vampire wins the fight in a dark room
unless there is garlic (G) in that room. In bright rooms or in rooms with garlic, the slayer
wins.

• All you can do is use the switch board to toggle lights and watch the fight, when it happens.
Your objective is to toggle the lights so that the slayer can win the fight.



Example instance with five rooms:

room 1

room 2

room 3room 4

room 5

S

V

G

(a) There is a partial model of this domain in the directory vampire. Complete it by adding
the effects of toggle-light and watch-fight. Do not add new actions or predicates.

The directory also contains instances which you can use for debugging. Their optimal plan
costs are 6, 4, 7, 5, 4, 12, 11, 10, 13, and 8.

You can use INVAL for debugging your PDDL code: inval <domain.pddl> <problem.pddl>

<plan> where problem and plan file are optional.

(b) PDDL uses first-order predicate logic to model planning tasks. However, the models dis-
cussed in the lecture are all based on propositional logic. Most planners convert PDDL
into one of the propositional models in a step called grounding. The directory preprocess

contains a Python tool to do this step. The call

./preprocess/ground.py vampire/domain.pddl vampire/p01.pddl

will create a new domain file vampire/domain grounded for p01.pddl and a new task file
vampire/p01 grounded.pddl. Repeat this for all task files and describe the effect of the
grounding procedure.

(c) In addition to ground.py there is an incomplete Python program called transform.py in
the directory preprocess which should transform grounded domains into conflict-free effect
normal form. Complete the missing parts and use it to transform your grounded domains
from exercise (b) into conflict-free effect normal form. The call

./preprocess/transform.py vampire/domain grounded for p01.pddl

will create the file vampire/domain grounded for p01 normalized.pddl.

(d) Use Fast Downward to generate plans for all tasks using the domains you created in exercises
(a)–(c). Then use INVAL to validate each plan against each domain formulation. In which
combinations are the plans valid? Discuss the reason for that.

Exercise A.3 (2 marks)(Lecture A3)

Consider the transition system given in Figure ??. Write down true statements about it using
all terms from the following list. The goal of this exercise is to confirm that you understand the
meaning of these terms.

• successor

• predecessor

• initial state

• goal state

• unreachable state

• solution

• path length

• path cost



A B C

D E F G

H I

ℓ2

ℓ1 ℓ0
ℓ1

ℓ1

ℓ3

ℓ0

ℓ1

ℓ2

ℓ0
ℓ1ℓ2

ℓ1

Figure 1: Example transition system with cost function c such that c(ℓi) = i for all i ∈ {0, 1, 2, 3}.

Exercise A.4 (0.5+0.5+0.5+0.5 marks)(Lecture A4)

Let o = ⟨¬a ∧ ¬b, a ∧ (c▷ b) ∧ ((¬c ∧ d)▷ (a ∧ b))⟩ be an operator for a planning task Π. Provide
the following effect conditions:

(a) effcond(¬a, eff(o))

(b) effcond(b, eff(o))

(c) effcond(c, eff(o))

(d) effcond(a ∧ b, eff(o))

It is sufficient to give the final result.

Exercise A.5 (4 marks)(Lecture A4)

In this exercise we consider the solitaire game Beleaguered Castle (http://justsolitaire.com/
Beleaguered_Castle_Solitaire/). It consists of a deck of cards stacked face-up in several
tableau piles. For each suit in the deck there is a discard pile consisting only of the ace initially.
There are three types of legal moves:

• The top card of a tableau pile can be moved on top of another tableau pile if the top card
of the target pile has a value that is one higher. The suit of both cards does not matter for
this move. For example, 2♣ can be moved on 3♡, 10♣ on J♠, or Q♢ on K♢.

• The top card of a tableau pile can be moved to an empty tableau pile. This is allowed for
all cards (not just for kings as in other solitaire games).

• The top card of a tableau pile can be moved to the discard pile for the matching suit if the
top card on the discard pile has a value one lower. For example, if 7♡ was discarded last,
then 8♡ can be discarded next. Discarded cards can never be moved again.

We consider a parameterized version of the game with m tableau piles Tableaus = {t1, . . . , tm} and
any set of cards Cards. For a given card c ∈ Cards we use suit(c) and value(c) to refer to its suit
and numerical value. The set of discard piles contains one discard pile for each suit: Discards =
{discards | s = suit(c) for a c ∈ Cards}. The set of all piles is Piles = Tableaus ∪Discards.
Model Beleaguered Castle as a family of propositional planning tasks. Use the following state
variables:

• c-on-x for all c ∈ Cards and x ∈ Cards ∪ Piles
For cards c1, c2 the variable c1-on-c2 should be true iff c1 is directly on top of c2; For a pile
p the variable c1-on-p should be true iff c1 is directly on top of the pile, i.e., iff c1 is the
bottom-most card in the pile p.



• x-clear for all x ∈ Cards ∪ Tableaus
An object should be clear iff there is no card on top of it.

• c-discarded for all c ∈ Cards
A card is discarded iff it is on the discard pile.

Exercise A.6 (4+2+2 marks)(Lecture A6 for (a) and (b), Lecture A7 for (c))

Consider the following planning domain: an agent is moving on a map and is trying to reach a
specific target location. However, there are locked doors between some locations that can only
be unlocked by first picking up their corresponding key from some other location. The agent can
hold only one key at a time.
Let G = ⟨N,E⟩ be an undirected graph which represents the map (nodes correspond to locations,
edges to doors), let s, t ∈ N be the start and target location of the agent, let L ⊆ E be the set
of locked doors, let Keys be the set of keys and let the function unlocks : Keys → L denote which
door is unlocked by a key and the function initial-location : Keys → N denote where each key is
located in the beginning.
The domain can then be modeled as a family of FDR tasks Π = ⟨V, I,O, γ⟩ where:

• V consists of the following variables:

– Variable at with domain N denotes the position of the agent.

– Variable {a, b}-locked for each {a, b} ∈ E with domain {⊤,⊥} denotes whether or not
an edge is locked.

– Variable holding with domain Keys ∪ {none} denotes which key the agent currently
holds.

– Variable k-location for each k ∈ Keys with domain N ∪ {door} ∪ {agent} denotes
the position of the key (at a location, in an unspecified door or carried by the agent).

• I sets above variables as follows:

– I(at) = s,

– I({a, b}-locked) = ⊤ for all {a, b} ∈ L and I({a, b})-locked) = ⊥ otherwise,

– I(holding) = none,

– I(k-location) = n for all k ∈ Keys, where n = initial-location(k).

• O contains the following actions:

– move-⟨a, b⟩ and move-⟨b, a⟩ for all {a, b} ∈ E, with precondition at = a∧{a, b}-locked =
⊥ and effect at = b for action move-⟨a, b⟩ and analogous precondition and effect for
action move-⟨b, a⟩.

– unlock-{a, b} for all {a, b} ∈ L, with precondition (at = a ∨ at = b) ∧ holding =
k∧k-location = agent∧{a, b}-locked = ⊤ and effect {a, b}-locked = ⊥∧holding =
none ∧ k-location = door, where k ∈ Keys with unlocks(k) = {a, b}.

– pick-k for all k ∈ Keys, with precondition at = x∧holding = none∧k-location = x
and effect holding = k ∧ k-location = agent, where x = initial-location(k).

• γ = (at = t)

(a) Transform the model into an equivalent family of STRIPS planning tasks.

(b) Consider the example instance in Figure ?? in the given FDR model and your STRIPS
model. Compare the state spaces of the two formulations. How many states do they have?
How many of those states are reachable? (Note that we expect actual numbers for these two
questions.) Are the state spaces the same? Are they equivalent? What remains the same,
what changes?



1

k1
3

k2

2

k3

4

k4

Figure 2: Example instance with four locations (circles, numbered for easy reference), doors
(edges) with specific colors, and keys (numbered k1 to k4) of different colors located initially at
the locations as shown. The agent starts at location 1. The goal of the agent does not matter for
the analysis of this exercise.

(c) List the mutex groups over the state variables of your STRIPS task in part (a) and specify
which variables in the given FDR task they would induce.

Exercise A.7 (0.5+1+0.5 marks)(Lecture A7)

Consider a propositional planning task Π with state variables V = {a, b, c, d, e, f, g, h}.

(a) Let v1 and v2 be mutex in Π for all {v1, v2} ∈ {{a, b}, {c, d}}. Provide the invariant that
covers exactly this information.

(b) Let v1 and v2 be mutex in Π for all {v1, v2} ∈

{{a, b}, {a, e}, {b, c}, {b, e}, {c, d}, {c, e}, {c, g}, {d, e}, {d, g}, {e, f}, {e, g}, {f, g}, {f, h}, {g, h}}.

Provide all mutex groups G for which there is no mutex group G′ such that G ⊂ G′.

(c) Let {{a, b, c, d}, {b, d, e}, {c, f}, {c, g}} be a set of mutex groups for Π. Provide two different
mutex covers for Π.

Submission rules:

• Exercise sheets must be submitted in groups of three students. Please submit a single copy
of the exercises per group (only one member of the group does the submission).

• Create a single PDF file (ending .pdf) for all non-programming exercises. Use a file name
that does not contain any spaces or special characters other than the underscore “ ”. If you
want to submit handwritten solutions, include their scans in the single PDF. Make sure it is
in a reasonable resolution so that it is readable, but ensure at the same time that the PDF
size is not astronomically large. Put the names of all group members on top of the first page.
Either use page numbers on all pages or put your names on each page. Make sure your PDF
has size A4 (fits the page size if printed on A4).

• For programming exercises, only create those code textfiles required by the exercise. Put
your names in a comment on top of each file. Make sure your code compiles and test it.
Code that does not compile or which we cannot successfully execute will not be graded.

• For the submission: if the exercise sheet does not include programming exercises, simply
upload the single PDF. If the exercise sheet includes programming exercises, upload a ZIP
file (ending .zip, .tar.gz or .tgz; not .rar or anything else) containing the single PDF and
the code textfile(s) and nothing else. Do not use directories within the ZIP, i.e., zip the files
directly.



• Do not upload several versions to ADAM, i.e., if you need to resubmit, use the same file
name again so that the previous submission is overwritten.


