

Discrete Mathematics in Computer Science

E5. Syntax and Semantics of Predicate Logic

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science

— E5. Syntax and Semantics of Predicate Logic

E5.1 Syntax of Predicate Logic

E5.2 Semantics of Predicate Logic

E5.1 Syntax of Predicate Logic

Limits of Propositional Logic

Cannot well be expressed in propositional logic:

- ▶ “Everyone who does the exercises passes the exam.”
- ▶ “If someone with administrator privileges presses ‘delete’, all data is gone.”
- ▶ “Everyone has a mother.”
- ▶ “If someone is the father of some person, the person is his child.”

▷ need more expressive logic
~~ predicate logic (a.k.a. first-order logic)

German: Prädikatenlogik (erster Stufe)

Syntax: Building Blocks

- ▶ **Signatures** define allowed symbols.
analogy: atom set A in propositional logic
- ▶ **Terms** are associated with objects by the semantics.
no analogy in propositional logic
- ▶ **Formulas** are associated with truth values (true or false)
by the semantics.
analogy: formulas in propositional logic

German: Signatur, Term, Formel

Signatures: Definition

Definition (Signature)

A **signature** (of predicate logic) is a 4-tuple $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ consisting of the following four disjoint sets:

- ▶ a finite or countable set \mathcal{V} of **variable symbols**
- ▶ a finite or countable set \mathcal{C} of **constant symbols**
- ▶ a finite or countable set \mathcal{F} of **function symbols**
- ▶ a finite or countable set \mathcal{P} of **predicate symbols**
(or **relation symbols**)

Every function symbol $f \in \mathcal{F}$ and predicate symbol $P \in \mathcal{P}$ has an associated **arity** $ar(f), ar(P) \in \mathbb{N}_1$ (number of arguments).

German: Variablen-, Konstanten-, Funktions-, Prädikat- und Relationssymbole; Stelligkeit

Signatures: Terminology and Conventions

terminology:

- ▶ ***k*-ary** (function or predicate) symbol:
symbol s with arity $ar(s) = k$.
- ▶ also: **unary, binary, ternary**

German: *k*-stellig, unär, binär, ternär

conventions (in this course):

- ▶ variable symbols written in *italics*,
other symbols upright.
- ▶ predicate symbols begin with capital letter,
other symbols with lower-case letters

Signatures: Examples

Example: Arithmetic

- $\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{zero}, \text{one}\}$
- $\mathcal{F} = \{\text{sum}, \text{product}\}$
- $\mathcal{P} = \{\text{Positive}, \text{SquareNumber}\}$

$ar(\text{sum}) = ar(\text{product}) = 2, ar(\text{Positive}) = ar(\text{SquareNumber}) = 1$

Signatures: Examples

Example: Genealogy

- $\mathcal{V} = \{x, y, z, x_1, x_2, x_3, \dots\}$
- $\mathcal{C} = \{\text{roger-federer}, \text{lisa-simpson}\}$
- $\mathcal{F} = \emptyset$
- $\mathcal{P} = \{\text{Female}, \text{Male}, \text{Parent}\}$

$$ar(\text{Female}) = ar(\text{Male}) = 1, ar(\text{Parent}) = 2$$

Terms: Definition

Definition (Term)

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

A **term** (over \mathcal{S}) is inductively constructed according to the following rules:

- ▶ Every variable symbol $v \in \mathcal{V}$ is a term.
- ▶ Every constant symbol $c \in \mathcal{C}$ is a term.
- ▶ If t_1, \dots, t_k are terms and $f \in \mathcal{F}$ is a function symbol with arity k , then $f(t_1, \dots, t_k)$ is a term.

German: Term

examples:

- ▶ x_4
- ▶ lisa-simpson
- ▶ $\text{sum}(x_3, \text{product}(\text{one}, x_5))$

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

- ▶ If t_1, \dots, t_k are terms (over \mathcal{S}) and $P \in \mathcal{P}$ is a k -ary predicate symbol, then the **atomic formula** (or the **atom**) $P(t_1, \dots, t_k)$ is a formula over \mathcal{S} .
- ▶ If t_1 and t_2 are terms (over \mathcal{S}), then the **identity** ($t_1 = t_2$) is a formula over \mathcal{S} .
- ▶ If $x \in \mathcal{V}$ is a variable symbol and φ a formula over \mathcal{S} , then the **universal quantification** $\forall x \varphi$ and the **existential quantification** $\exists x \varphi$ are formulas over \mathcal{S} .

...

German: atomare Formel, Atom, Identität, Allquantifizierung, Existenzquantifizierung

Formulas: Definition

Definition (Formula)

For a signature $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ the set of predicate logic formulas (over \mathcal{S}) is inductively defined as follows:

...

- ▶ If φ is a formula over \mathcal{S} , then so is its **negation** $\neg\varphi$.
- ▶ If φ and ψ are formulas over \mathcal{S} , then so are the **conjunction** $(\varphi \wedge \psi)$ and the **disjunction** $(\varphi \vee \psi)$.

German: Negation, Konjunktion, Disjunktion

Formulas: Examples

Examples: Arithmetic and Genealogy

- ▶ $\text{Positive}(x_2)$
- ▶ $\forall x (\neg \text{SquareNumber}(x) \vee \text{Positive}(x))$
- ▶ $\exists x_3 (\text{SquareNumber}(x_3) \wedge \neg \text{Positive}(x_3))$
- ▶ $\forall x (x = y)$
- ▶ $\forall x (\text{sum}(x, x) = \text{product}(x, \text{one}))$
- ▶ $\forall x \exists y (\text{sum}(x, y) = \text{zero})$
- ▶ $\forall x \exists y (\text{Parent}(y, x) \wedge \text{Female}(y))$

Terminology: The symbols \forall and \exists are called **quantifiers**.

German: Quantoren

Abbreviations and Placement of Parentheses by Convention

abbreviations:

- ▶ $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg \varphi \vee \psi)$.
- ▶ $(\varphi \leftrightarrow \psi)$ is an abbreviation for $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$.
- ▶ Sequences of the same quantifier can be abbreviated.
For example:

- ▶ $\forall x \forall y \forall z \varphi \rightsquigarrow \forall xyz \varphi$
- ▶ $\exists x \exists y \exists z \varphi \rightsquigarrow \exists xyz \varphi$
- ▶ $\forall w \exists x \exists y \forall z \varphi \rightsquigarrow \forall w \exists xy \forall z \varphi$

placement of parentheses by convention:

- ▶ analogous to propositional logic
- ▶ quantifiers \forall and \exists bind more strongly than anything else.
- ▶ example: $\forall x P(x) \rightarrow Q(x)$ corresponds to $(\forall x P(x) \rightarrow Q(x))$,
not $\forall x (P(x) \rightarrow Q(x))$.

Exercise

$\mathcal{S} = \langle \{x, y, z\}, \{c\}, \{f, g, h\}, \{Q, R, S\} \rangle$ with
 $ar(f) = 3, ar(g) = ar(h) = 1, ar(Q) = 2, ar(R) = ar(S) = 1$

- ▶ $f(x, y)$
- ▶ $(g(x) = R(y))$
- ▶ $(g(x) = f(y, c, h(x)))$
- ▶ $(R(x) \wedge \forall x S(x))$
- ▶ $\forall c Q(c, x)$
- ▶ $(\forall x \exists y (g(x) = y) \vee (h(x) = c))$

Which expressions are syntactically correct formulas or terms for \mathcal{S} ?
What kind of term/formula?

E5.2 Semantics of Predicate Logic

Semantics: Motivation

- ▶ interpretations in propositional logic:
truth assignments for the **propositional variables**
- ▶ There are no propositional variables in predicate logic.
- ▶ instead: interpretation determines meaning
of the **constant, function and predicate symbols**.
- ▶ meaning of **variable symbols** not determined by interpretation
but by separate **variable assignment**

Interpretations and Variable Assignments

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation, Variable Assignment)

An **interpretation** (for \mathcal{S}) is a pair $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ of:

- ▶ a non-empty set U called the **universe** and
- ▶ a function $\cdot^{\mathcal{I}}$ that assigns a meaning to the constant, function, and predicate symbols:
 - ▶ $c^{\mathcal{I}} \in U$ for constant symbols $c \in \mathcal{C}$
 - ▶ $f^{\mathcal{I}} : U^k \rightarrow U$ for k -ary function symbols $f \in \mathcal{F}$
 - ▶ $P^{\mathcal{I}} \subseteq U^k$ for k -ary predicate symbols $P \in \mathcal{P}$

A **variable assignment** (for \mathcal{S} and universe U)
is a function $\alpha : \mathcal{V} \rightarrow U$.

German: Interpretation, Universum (or Grundmenge),
Variablenzuweisung

Interpretations and Variable Assignments: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{V} = \{x, y, z\}$,
 $\mathcal{C} = \{\text{zero}, \text{one}\}$, $\mathcal{F} = \{\text{sum}, \text{product}\}$, $\mathcal{P} = \{\text{SquareNumber}\}$
 $\text{ar}(\text{sum}) = \text{ar}(\text{product}) = 2$, $\text{ar}(\text{SquareNumber}) = 1$

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- ▶ $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- ▶ $\text{zero}^{\mathcal{I}} = u_0$
- ▶ $\text{one}^{\mathcal{I}} = u_1$
- ▶ $\text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- ▶ $\text{product}^{\mathcal{I}}(u_i, u_j) = u_{(i \cdot j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- ▶ $\text{SquareNumber}^{\mathcal{I}} = \{u_0, u_1, u_2, u_4\}$

$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Semantics: Informally

Example: $(\forall x(\text{Block}(x) \rightarrow \text{Red}(x)) \wedge \text{Block}(a))$

“For all objects x : if x is a block, then x is red.

Also, the object called a is a block.”

- ▶ Terms are interpreted as objects.
- ▶ Unary predicates denote properties of objects
(to be a block, to be red, to be a square number, ...).
- ▶ General predicates denote relations between objects
(to be someone's child, to have a common divisor, ...).
- ▶ Universally quantified formulas (“ \forall ”) are true
if they hold for every object in the universe.
- ▶ Existentially quantified formulas (“ \exists ”) are true
if they hold for at least one object in the universe.

Interpretations of Terms

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Interpretation of a Term)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} ,
and let α be a variable assignment for \mathcal{S} and universe U .

Let t be a term over \mathcal{S} .

The **interpretation of t** under \mathcal{I} and α , written as $t^{\mathcal{I}, \alpha}$,
is the element of the universe U defined as follows:

- ▶ If $t = x$ with $x \in \mathcal{V}$ (t is a **variable term**):
 $x^{\mathcal{I}, \alpha} = \alpha(x)$
- ▶ If $t = c$ with $c \in \mathcal{C}$ (t is a **constant term**):
 $c^{\mathcal{I}, \alpha} = c^{\mathcal{I}}$
- ▶ If $t = f(t_1, \dots, t_k)$ (t is a **function term**):
 $f(t_1, \dots, t_k)^{\mathcal{I}, \alpha} = f^{\mathcal{I}}(t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha})$

Interpretations of Terms: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{\text{zero}, \text{one}\}$, $\mathcal{F} = \{\text{sum}, \text{product}\}$,
 $\text{ar}(\text{sum}) = \text{ar}(\text{product}) = 2$

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- ▶ $U = \{u_0, u_1, u_2, u_3, u_4, u_5, u_6\}$
- ▶ $\text{zero}^{\mathcal{I}} = u_0$
- ▶ $\text{one}^{\mathcal{I}} = u_1$
- ▶ $\text{sum}^{\mathcal{I}}(u_i, u_j) = u_{(i+j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$
- ▶ $\text{product}^{\mathcal{I}}(u_i, u_j) = u_{(i \cdot j) \bmod 7}$ for all $i, j \in \{0, \dots, 6\}$

$\alpha = \{x \mapsto u_5, y \mapsto u_5, z \mapsto u_0\}$

Interpretations of Terms: Example (ctd.)

Example (ctd.)

- ▶ $\text{zero}^{\mathcal{I}, \alpha} =$
- ▶ $y^{\mathcal{I}, \alpha} =$
- ▶ $\text{sum}(x, y)^{\mathcal{I}, \alpha} =$
- ▶ $\text{product}(\text{one}, \text{sum}(x, \text{zero}))^{\mathcal{I}, \alpha} =$

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

Let $\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ be an interpretation for \mathcal{S} ,
 and let α be a variable assignment for \mathcal{S} and universe U .
 We say that \mathcal{I} and α **satisfy** a predicate logic formula φ
 (also: φ is **true** under \mathcal{I} and α), written: $\mathcal{I}, \alpha \models \varphi$,
 according to the following inductive rules:

$$\mathcal{I}, \alpha \models P(t_1, \dots, t_k) \quad \text{iff} \quad \langle t_1^{\mathcal{I}, \alpha}, \dots, t_k^{\mathcal{I}, \alpha} \rangle \in P^{\mathcal{I}}$$

$$\mathcal{I}, \alpha \models (t_1 = t_2) \quad \text{iff} \quad t_1^{\mathcal{I}, \alpha} = t_2^{\mathcal{I}, \alpha}$$

$$\mathcal{I}, \alpha \models \neg \varphi \quad \text{iff} \quad \mathcal{I}, \alpha \not\models \varphi$$

$$\mathcal{I}, \alpha \models (\varphi \wedge \psi) \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi \text{ and } \mathcal{I}, \alpha \models \psi$$

$$\mathcal{I}, \alpha \models (\varphi \vee \psi) \quad \text{iff} \quad \mathcal{I}, \alpha \models \varphi \text{ or } \mathcal{I}, \alpha \models \psi \quad \dots$$

German: \mathcal{I} und α erfüllen φ (also: φ ist wahr unter \mathcal{I} und α)

Semantics of Predicate Logic Formulas

Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$ be a signature.

Definition (Formula is Satisfied or True)

...

$\mathcal{I}, \alpha \models \forall x \varphi$ iff $\mathcal{I}, \alpha[x := u] \models \varphi$ for all $u \in U$

$\mathcal{I}, \alpha \models \exists x \varphi$ iff $\mathcal{I}, \alpha[x := u] \models \varphi$ for at least one $u \in U$

where $\alpha[x := u]$ is the same variable assignment as α ,
except that it maps variable x to the value u .

Formally:

$$(\alpha[x := u])(z) = \begin{cases} u & \text{if } z = x \\ \alpha(z) & \text{if } z \neq x \end{cases}$$

Semantics: Example

Example

signature: $\mathcal{S} = \langle \mathcal{V}, \mathcal{C}, \mathcal{F}, \mathcal{P} \rangle$

with $\mathcal{V} = \{x, y, z\}$, $\mathcal{C} = \{a, b\}$, $\mathcal{F} = \emptyset$, $\mathcal{P} = \{\text{Block}, \text{Red}\}$,
 $\text{ar}(\text{Block}) = \text{ar}(\text{Red}) = 1$.

$\mathcal{I} = \langle U, \cdot^{\mathcal{I}} \rangle$ with

- ▶ $U = \{u_1, u_2, u_3, u_4, u_5\}$
- ▶ $a^{\mathcal{I}} = u_1$
- ▶ $b^{\mathcal{I}} = u_3$
- ▶ $\text{Block}^{\mathcal{I}} = \{u_1, u_2\}$
- ▶ $\text{Red}^{\mathcal{I}} = \{u_1, u_2, u_3, u_5\}$

$\alpha = \{x \mapsto u_1, y \mapsto u_2, z \mapsto u_1\}$

Semantics: Example (ctd.)

Example (ctd.)

Questions:

- ▶ $\mathcal{I}, \alpha \models (\text{Block}(b) \vee \neg \text{Block}(b))?$
- ▶ $\mathcal{I}, \alpha \models (\text{Block}(x) \rightarrow (\text{Block}(x) \vee \neg \text{Block}(y)))?$
- ▶ $\mathcal{I}, \alpha \models (\text{Block}(a) \wedge \text{Block}(b))?$
- ▶ $\mathcal{I}, \alpha \models \forall x(\text{Block}(x) \rightarrow \text{Red}(x))?$