Discrete Mathematics in Computer Science E4. Inference

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science — E4. Inference

E4.1 Inference Rules and Calculi

E4.2 Resolution Calculus

E4.1 Inference Rules and Calculi

E4. Inference Inference Rules and Calculi

Inference: Motivation

- up to now: proof of logical consequence with semantic arguments
- no general algorithm
- solution: produce formulas that are logical consequences of given formulas with syntactic inference rules
- advantage: mechanical method that can easily be implemented as an algorithm

Inference Rules

► Inference rules have the form

$$\frac{\varphi_1,\ldots,\varphi_k}{\psi}$$
.

- ▶ Meaning: "Every model of $\varphi_1, \ldots, \varphi_k$ is a model of ψ ."
- An axiom is an inference rule with k = 0.
- A set of inference rules is called a calculus or proof system.

German: Inferenzregel, Axiom, (der) Kalkül, Beweissystem

Some Inference Rules for Propositional Logic

$$\frac{\varphi, \ (\varphi \to \psi)}{\psi}$$
 Modus tollens
$$\frac{\neg \psi, \ (\varphi \to \psi)}{\neg \varphi}$$

$$\wedge \text{-elimination} \qquad \frac{(\varphi \land \psi)}{\varphi} \qquad \frac{(\varphi \land \psi)}{\psi}$$

$$\wedge \text{-introduction} \qquad \frac{\varphi, \ \psi}{(\varphi \land \psi)}$$

$$\vee \text{-introduction} \qquad \frac{\varphi}{(\varphi \lor \psi)}$$

$$\wedge \text{-elimination} \qquad \frac{(\varphi \leftrightarrow \psi)}{(\varphi \to \psi)} \qquad \frac{(\varphi \leftrightarrow \psi)}{(\psi \to \varphi)}$$

Derivation

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1, \ldots, ψ_k with

- $\mathbf{v}_{\mathbf{k}} = \varphi$ and
- ▶ for all $i \in \{1, ..., k\}$:
 - $\psi_i \in \mathsf{KB}$, or
 - ψ_i is the result of the application of an inference rule to elements from $\{\psi_1, \dots, \psi_{i-1}\}$.

German: Ableitung, Beweis

Derivation: Example

Example

Given: $KB = \{P, (P \rightarrow Q), (P \rightarrow R), ((Q \land R) \rightarrow S)\}$

Task: Find derivation of $(S \land R)$ from KB.

- P (KB)
- Q (1, 2, Modus ponens)
- R (1, 4, Modus ponens)
- \bigcirc $(Q \land R)$ (3, 5, \land -introduction)
- \bigcirc $((Q \land R) \rightarrow S)$ (KB)
- **3** *S* (6, 7, Modus ponens)
- $(S \land R)$ (8, 5, \land -introduction)

Correctness and Completeness

Definition (Correctness and Completeness of a Calculus)

We write $KB \vdash_C \varphi$ if there is a derivation of φ from KB in calculus C.

(If calculus C is clear from context, also only $KB \vdash \varphi$.)

A calculus C is correct if for all KB and φ KB $\vdash_C \varphi$ implies KB $\models_{\mathcal{C}} \varphi$.

A calculus C is complete if for all KB and φ KB $\models \varphi$ implies KB $\vdash_C \varphi$.

Consider calculus C, consisting of the derivation rules seen earlier.

Question: Is *C* correct? Question: Is *C* complete?

German: korrekt, vollständig

Refutation-completeness

- We obviously want correct calculi.
- Do we always need a complete calculus?
- ► Contradiction theorem: $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$
- ▶ This implies that KB $\models \varphi$ iff KB $\cup \{\neg \varphi\}$ is unsatisfiable.
- We can reduce the general implication problem to a test of unsatisfiability.
- In calculi, we use the special symbol □ for (provably) unsatisfiable formulas.

Definition (Refutation-Completeness)

A calculus C is refutation-complete if $KB \vdash_C \Box$ for all unsatisfiable KB.

German: widerlegungsvollständig

E4.2 Resolution Calculus

Resolution: Idea

Resolution is a refutation-complete calculus for knowledge bases in conjunctive normal form.

- Every knowledge base can be transformed into equivalent formulas in CNF.
 - Transformation can require exponential time.
 - Alternative: efficient transformation into equisatisfiable formulas (not part of this course)
- ▶ Show KB $\models \varphi$ by deriving KB $\cup \{\neg \varphi\} \vdash_R \square$ with resolution calculus R.
- Resolution can require exponential time.
- This is probably the case for all refutation-complete proof methods. → complexity theory

German: Resolution, erfüllbarkeitsäguivalent

Knowledge Base as Set of Clauses

Simplified notation of knowledge bases in CNF

- ► Formula in CNF as set of clauses (due to commutativity, idempotence, associativity of ∧)
- Set of formulas as set of clauses
- Clause as set of literals (due to commutativity, idempotence, associativity of ∨)
- Knowledge base as set of sets of literals

Example

$$\mathsf{KB} = \{ (P \lor P), ((\neg P \lor Q) \land (\neg P \lor R) \land (Q \lor \neg P) \land R), \\ ((\neg Q \lor \neg R \lor S) \land P) \}$$

as set of clauses:

$$\Delta = \{ \{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{R\}, \{\neg Q, \neg R, S\} \}$$

Resolution Rule

The resolution calculus consists of a single rule, called resolution rule:

$$\frac{C_1 \cup \{X\}, \ C_2 \cup \{\neg X\}}{C_1 \cup C_2},$$

where C_1 and C_2 are (possibly empty) clauses and X is an atomic proposition.

If we derive the empty clause, we write \square instead of $\{\}$.

Terminology:

- \triangleright X and \neg X are the resolution literals,
- $ightharpoonup C_1 \cup \{X\}$ and $C_2 \cup \{\neg X\}$ are the parent clauses, and
- $ightharpoonup C_1 \cup C_2$ is the resolvent.

German: Resolutionskalkül, Resolutionsregel, Resolutionsliterale, Elternklauseln, Resolvent

Proof by Resolution

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base Δ is a sequence of clauses C_1, \ldots, C_n with

- $ightharpoonup C_n = D$ and
- ▶ for all $i \in \{1, ..., n\}$:
 - $ightharpoonup C_i \in \Delta$, or
 - $ightharpoonup C_i$ is resolvent of two clauses from $\{C_1,\ldots,C_{i-1}\}$.

If there is a proof of D by resolution from Δ , we say that D can be derived with resolution from Δ and write $\Delta \vdash_R D$.

Remark: Resolution is a correct, refutation-complete, but incomplete calculus.

German: Resolutions beweis, mit Resolution aus Δ abgeleitet

Proof by Resolution: Example

Proof by Resolution for Testing a Logical Consequence: Example

Given: $KB = \{P, (P \rightarrow (Q \land R))\}.$

Show with resolution that KB \models ($R \lor S$).

Three steps:

- Reduce logical consequence to unsatisfiability.
- Transform knowledge base into clause form (CNF).
- **3** Derive empty clause \square with resolution.

Step 1: Reduce logical consequence to unsatisfiability.

 $KB \models (R \lor S)$ iff $KB \cup \{\neg (R \lor S)\}$ is unsatisfiable.

Thus, consider

$$\mathsf{KB}' = \mathsf{KB} \cup \{\neg (R \vee S)\} = \{P, (P \to (Q \land R)), \neg (R \vee S)\}.$$

. . .

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example $KB' = \{P, (P \to (Q \land R)), \neg (R \lor S)\}.$

Step 2: Transform knowledge base into clause form (CNF).

- \rightsquigarrow Clauses: $\{P\}$
- ► $P \rightarrow (Q \land R)) \equiv (\neg P \lor (Q \land R)) \equiv ((\neg P \lor Q) \land (\neg P \lor R))$ \rightsquigarrow Clauses: $\{\neg P, Q\}, \{\neg P, R\}$
- $\neg (R \lor S) \equiv (\neg R \land \neg S)$ $\rightsquigarrow \mathsf{Clauses}: \{\neg R\}, \{\neg S\}$

$$\Delta = \{ \{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\} \}$$

Proof by Resolution: Example (continued)

Proof by Resolution for Testing a Logical Consequence: Example

$$\Delta = \{\{P\}, \{\neg P, Q\}, \{\neg P, R\}, \{\neg R\}, \{\neg S\}\}$$

Step 3: Derive empty clause \square with resolution.

- $C_1 = \{P\} \text{ (from } \Delta)$
- $\blacktriangleright \ \ \textit{C}_2 = \{ \neg \textit{P}, \textit{Q} \} \ (\text{from } \Delta)$

- $\blacktriangleright \ \ C_5 = \{Q\} \ (\text{from} \ \ C_1 \ \text{and} \ \ C_2)$
- $ightharpoonup C_6 = \{\neg P\} \text{ (from } C_3 \text{ and } C_4)$
- $ightharpoonup C_7 = \Box \text{ (from } C_1 \text{ and } C_6\text{)}$

Note: There are shorter proofs. (For example?)

Another Example

Another Example for Resolution Show with resolution, that $KB \models DrinkBeer$, where

```
\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \to \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \to \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \to \neg \mathsf{EatFish}) \}. \end{split}
```

Proving that Something Does Not Follow

- We can now use resolution proofs to mechanically show KB $\models \varphi$ whenever a given knowledge base logically implies φ .
- ▶ Question: How can we use the same mechanism to show that something does not follow (KB $\not\models \varphi$)?