Discrete Mathematics in Computer Science

Simplified Notation

Malte Helmert, Gabriele Röger

University of Basel

Parentheses

Associativity:

$$
\begin{aligned}
((\varphi \wedge \psi) \wedge \chi) & \equiv(\varphi \wedge(\psi \wedge \chi)) \\
((\varphi \vee \psi) \vee \chi) & \equiv(\varphi \vee(\psi \vee \chi))
\end{aligned}
$$

- Placement of parentheses for a conjunction of conjunctions does not influence whether an interpretation is a model.
- ditto for disjunctions of disjunctions
\rightarrow can omit parentheses and treat this as if parentheses placed arbitrarily
- Example: $\left(A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4}\right)$ instead of $\left(\left(A_{1} \wedge\left(A_{2} \wedge A_{3}\right)\right) \wedge A_{4}\right)$
- Example: $(\neg A \vee(B \wedge C) \vee D)$ instead of $((\neg A \vee(B \wedge C)) \vee D)$

Parentheses

Does this mean we can always omit all parentheses and assume an arbitrary placement? \rightarrow No!

Parentheses

Does this mean we can always omit all parentheses and assume an arbitrary placement? \rightarrow No!

$$
((\varphi \wedge \psi) \vee \chi) \not \equiv(\varphi \wedge(\psi \vee \chi))
$$

Parentheses

Does this mean we can always omit all parentheses and assume an arbitrary placement? \rightarrow No!

$$
((\varphi \wedge \psi) \vee \chi) \not \equiv(\varphi \wedge(\psi \vee \chi))
$$

What should $\varphi \wedge \psi \vee \chi$ mean?

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \neg binds more strongly than \wedge
- \wedge binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow
\rightarrow cf. PEMDAS/"Punkt vor Strich"

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

■ \neg binds more strongly than \wedge

- \wedge binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow
$\rightarrow c f$. PEMDAS/"Punkt vor Strich"
Example
$A \vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $A \vee \neg C \wedge B \rightarrow A \vee \neg D$

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an implicit placement is assumed:
$■ \neg$ binds more strongly than \wedge
$■ \wedge$ binds more strongly than \vee

- \vee binds more strongly than \rightarrow or \leftrightarrow
\rightarrow cf. PEMDAS/"Punkt vor Strich"

Example

$A \vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $A \vee(\neg C \wedge B) \rightarrow A \vee \neg D$

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an implicit placement is assumed:
$■ \neg$ binds more strongly than \wedge
$■ \wedge$ binds more strongly than \vee

- \vee binds more strongly than \rightarrow or \leftrightarrow
\rightarrow cf. PEMDAS/"Punkt vor Strich"

Example

$A \vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $(A \vee(\neg C \wedge B)) \rightarrow(A \vee \neg D)$

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an implicit placement is assumed:
$■ \neg$ binds more strongly than \wedge
$■ \wedge$ binds more strongly than \vee

- \vee binds more strongly than \rightarrow or \leftrightarrow
\rightarrow cf. PEMDAS/"Punkt vor Strich"

Example

$A \vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $((A \vee(\neg C \wedge B)) \rightarrow(A \vee \neg D))$

Placement of Parentheses by Convention

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

■ \neg binds more strongly than \wedge
$■ \wedge$ binds more strongly than \vee

- \vee binds more strongly than \rightarrow or \leftrightarrow
$\rightarrow c f$. PEMDAS/ "Punkt vor Strich"

Example

$A \vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $((A \vee(\neg C \wedge B)) \rightarrow(A \vee \neg D))$

- often harder to read
- error-prone
\rightarrow not used in this course

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}
$$

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n}
$$

Analogously:

$$
\begin{aligned}
& \bigwedge_{i=1}^{n} \varphi_{i}=\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \\
& \bigvee_{i=1}^{n} \varphi_{i}=\left(\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n}\right)
\end{aligned}
$$

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} & =x_{1}+x_{2}+\cdots+x_{n} \\
\sum_{x \in\left\{x_{1}, \ldots, x_{n}\right\}} x & =x_{1}+x_{2}+\cdots+x_{n}
\end{aligned}
$$

Analogously:

$$
\begin{aligned}
& \bigwedge_{i=1}^{n} \varphi_{i}=\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \\
& \bigvee_{i=1}^{n} \varphi_{i}=\left(\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n}\right)
\end{aligned}
$$

Short Notations for Conjunctions and Disjunctions

Short notation for addition:

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} & =x_{1}+x_{2}+\cdots+x_{n} \\
\sum_{x \in\left\{x_{1}, \ldots, x_{n}\right\}} x & =x_{1}+x_{2}+\cdots+x_{n}
\end{aligned}
$$

Analogously (possible because of commutativity of \wedge and \vee):

$$
\begin{gathered}
\bigwedge_{i=1}^{n} \varphi_{i}=\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \\
\bigvee_{i=1}^{n} \varphi_{i}=\left(\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n}\right) \\
\bigwedge_{\varphi \in X} \varphi=\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \\
\bigvee_{\varphi \in X} \varphi=\left(\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n}\right) \\
\text { for } X=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}
\end{gathered}
$$

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$
\psi=\bigwedge_{\varphi \in X} \varphi \text { and } \psi=\bigvee_{\varphi \in X} \varphi
$$

if $X=\emptyset$ or $X=\{\chi\}$?

Short Notation: Corner Cases

Is $\mathcal{I} \models \psi$ true for

$$
\psi=\bigwedge_{\varphi \in X} \varphi \text { and } \psi=\bigvee_{\varphi \in X} \varphi
$$

if $X=\emptyset$ or $X=\{\chi\}$?
convention:

- $\bigwedge_{\varphi \in \emptyset} \varphi$ is a tautology.
- $\bigvee_{\varphi \in \emptyset} \varphi$ is unsatisfiable.
- $\bigwedge_{\varphi \in\{\chi\}} \varphi=\bigvee_{\varphi \in\{\chi\}} \varphi=\chi$

Discrete Mathematics in Computer Science Normal Forms

Malte Helmert, Gabriele Röger

University of Basel

Why Normal Forms?

- A normal form is a representation with certain syntactic restrictions.
- condition for reasonable normal form: every formula must have a logically equivalent formula in normal form
- advantages:
- can restrict proofs to formulas in normal form
- can define algorithms only for formulas in normal form

German: Normalform

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
- A clause is a disjunction of literals (e. g., $(\mathrm{Q} \vee \neg \mathrm{P} \vee \neg \mathrm{S} \vee \mathrm{R})$).

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
- A clause is a disjunction of literals (e. g., $(\mathrm{Q} \vee \neg \mathrm{P} \vee \neg \mathrm{S} \vee \mathrm{R})$).
- A monomial is a conjunction of literals (e. g., $(Q \wedge \neg P \wedge \neg S \wedge R)$).

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
- A clause is a disjunction of literals (e. g., $(Q \vee \neg P \vee \neg S \vee R)$).
- A monomial is a conjunction of literals (e.g., $(Q \wedge \neg P \wedge \neg S \wedge R)$).

The terms clause and monomial are also used for the corner case with only one literal.

Literals, Clauses and Monomials

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
- A clause is a disjunction of literals (e. g., $(\mathrm{Q} \vee \neg \mathrm{P} \vee \neg \mathrm{S} \vee \mathrm{R})$).
- A monomial is a conjunction of literals (e.g., $(Q \wedge \neg P \wedge \neg S \wedge R)$).

The terms clause and monomial are also used for the corner case with only one literal.

German: Literal, Klausel, Monom

Terminology: Examples

Examples

$$
\begin{aligned}
& (\neg Q \wedge R) \\
\square & (P \vee \neg Q) \\
\square & ((P \vee \neg Q) \wedge P) \\
\square & (P)
\end{aligned}
$$

- $(\mathrm{P} \vee \mathrm{P})$
- $\neg \neg$

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial
- ($P \vee \neg Q)$
- ($(P \vee \neg Q) \wedge P)$
- $\neg \mathrm{P}$
- ($\mathrm{P} \rightarrow \mathrm{Q}$)
- ($\mathrm{P} \vee \mathrm{P}$)
- $\neg \neg \mathrm{P}$

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- ($(P \vee \neg Q) \wedge P)$
- $\neg \mathrm{P}$
- ($\mathrm{P} \rightarrow \mathrm{Q}$)
- $(\mathrm{P} \vee \mathrm{P})$
- $\neg \neg \mathrm{P}$

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \vee \neg Q) \wedge P)$ is neither literal nor clause nor monomial
- $\neg \mathrm{P}$
- ($\mathrm{P} \rightarrow \mathrm{Q}$)
- ($\mathrm{P} \vee \mathrm{P}$)
- $\neg \neg P$

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \vee \neg Q) \wedge P)$ is neither literal nor clause nor monomial
$\square \neg \mathrm{P}$ is a literal, a clause and a monomial
- ($\mathrm{P} \rightarrow \mathrm{Q}$)
- ($\mathrm{P} \vee \mathrm{P}$)

■ $\neg \neg P$

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \vee \neg Q) \wedge P)$ is neither literal nor clause nor monomial
$\square \neg \mathrm{P}$ is a literal, a clause and a monomial
■ ($\mathrm{P} \rightarrow \mathrm{Q}$) is neither literal nor clause nor monomial (but $(\neg P \vee Q)$ is a clause!)
- $(\mathrm{P} \vee \mathrm{P})$

■ $\neg \neg$

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial

■ $(P \vee \neg Q)$ is a clause

- $((P \vee \neg Q) \wedge P)$ is neither literal nor clause nor monomial
$\square \neg \mathrm{P}$ is a literal, a clause and a monomial
■ ($\mathrm{P} \rightarrow \mathrm{Q}$) is neither literal nor clause nor monomial (but $(\neg \mathrm{P} \vee \mathrm{Q})$ is a clause!)
- ($\mathrm{P} \vee \mathrm{P}$) is a clause, but not a literal or monomial
- $\neg \neg P$

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial

■ $(P \vee \neg Q)$ is a clause

- $((P \vee \neg Q) \wedge P)$ is neither literal nor clause nor monomial
$\square \neg \mathrm{P}$ is a literal, a clause and a monomial
■ ($\mathrm{P} \rightarrow \mathrm{Q}$) is neither literal nor clause nor monomial (but $(\neg \mathrm{P} \vee \mathrm{Q})$ is a clause!)
- ($\mathrm{P} \vee \mathrm{P}$) is a clause, but not a literal or monomial
- $\neg \neg \mathrm{P}$ is neither literal nor clause nor monomial

Conjunctive Normal Form

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i. e., if it has the form

$$
\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_{i}} L_{i j}
$$

with $n, m_{i}>0$ (for $1 \leq i \leq n$), where the $L_{i j}$ are literals.
German: konjunktive Normalform (KNF)

Example

$((\neg P \vee Q) \wedge R \wedge(P \vee \neg S))$ is in CNF.

Disjunctive Normal Form

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i. e., if it has the form

$$
\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_{i}} L_{i j}
$$

with $n, m_{i}>0$ (for $1 \leq i \leq n$), where the $L_{i j}$ are literals.
German: disjunktive Normalform (DNF)

Example

$((\neg P \wedge Q) \vee R \vee(P \wedge \neg S))$ is in DNF.

CNF and DNF: Examples

Which of the following formulas are in CNF? Which are in DNF?
■ $((P \vee \neg Q) \wedge P)$

- $((R \vee Q) \wedge P \wedge(R \vee S))$
- ($P \vee(\neg Q \wedge R))$
- $((P \vee \neg Q) \rightarrow P)$
- P

Construction of CNF (and DNF)

Algorithm to Construct CNF

(1) Replace abbreviations \rightarrow and \leftrightarrow by their definitions $((\rightarrow)$-elimination and (\leftrightarrow)-elimination). \rightsquigarrow formula structure: only \vee, \wedge, ᄀ
(2) Move negations inside using De Morgan and double negation. \rightsquigarrow formula structure: only \vee, \wedge, literals
(3) Distribute \vee over \wedge with distributivity (strictly speaking also with commutativity). \rightsquigarrow formula structure: CNF
(9) optionally: Simplify the formula at the end or at intermediate steps (e. g., with idempotence).

Note: For DNF, distribute \wedge over \vee instead.

Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\varphi \equiv(\neg((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \vee \mathrm{P} \vee \neg(\mathrm{~S} \vee \mathrm{~T}))
$$

[Step 1]

Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 1] }} \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }}
\end{aligned}
$$

Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \vee \mathrm{P} \vee \neg(\mathrm{~S} \vee \mathrm{~T})) & & {[\text { Step 1] }} \\
& \equiv((\neg(\mathrm{P} \wedge \neg \mathrm{Q}) \wedge \neg \mathrm{R}) \vee \mathrm{P} \vee \neg(\mathrm{~S} \vee \mathrm{~T})) & & {[\text { Step 2] }} \\
& \equiv(((\neg \mathrm{P} \vee \neg \neg \mathrm{Q}) \wedge \neg \mathrm{R}) \vee \mathrm{P} \vee \neg(\mathrm{~S} \vee \mathrm{~T})) & & {[\text { Step 2] }}
\end{aligned}
$$

Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 1] }} \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }}
\end{aligned}
$$

Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & \text { [Step 1] } \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 2] }}
\end{aligned}
$$

Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 1] }} \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 2] }} \\
& \equiv((\neg P \vee Q \vee P \vee(\neg S \wedge \neg T)) \wedge & & \\
& (\neg R \vee P \vee(\neg S \wedge \neg T))) & & {[\text { Step 3] }}
\end{aligned}
$$

Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & \text { Step 1] } \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 2] }} \\
& \equiv((\neg P \vee Q \vee P \vee(\neg S \wedge \neg T)) \wedge & & \\
& \equiv(\neg R \vee P \vee(\neg S \wedge \neg T))) & & {[\text { Step 3] }} \\
& \equiv(\neg R \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 4] }}
\end{aligned}
$$

Constructing CNF: Example

Construction of Conjunctive Normal Form

Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & \text { [Step 1] } \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 2] }} \\
& \equiv((\neg P \vee Q \vee P \vee(\neg S \wedge \neg T)) \wedge & & \\
& (\neg R \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 3] }} \\
& \equiv(\neg R \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 4] }} \\
& \equiv((\neg R \vee P \vee \neg S) \wedge(\neg R \vee P \vee \neg T)) & & {[\text { Step 3] }}
\end{aligned}
$$

Construct DNF: Example

Construction of Disjunctive Normal Form

Given: $\varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{S} \vee \mathrm{T})))$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) \\
& \equiv((\neg P \wedge \neg R) \vee(Q \wedge \neg R) \vee P \vee(\neg S \wedge \neg T))
\end{aligned}
$$

[Step 1]
[Step 2]
[Step 2]
[Step 2]
[Step 2]
[Step 3]

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

■ "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".
■ Intuition: algorithm to construct normal form works with any given formula and only uses equivalence rewriting.

Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".
■ Intuition: algorithm to construct normal form works with any given formula and only uses equivalence rewriting.
- actual proof would use induction over structure of formula

Size of Normal Forms

- In the worst case, a logically equivalent formula in CNF or DNF can be exponentially larger than the original formula.
■ Example: for $\left(x_{1} \vee y_{1}\right) \wedge \cdots \wedge\left(x_{n} \vee y_{n}\right)$ there is no smaller logically equivalent formula in DNF than:

$$
\bigvee_{S \in \mathcal{P}(\{1, \ldots, n\})}\left(\bigwedge_{i \in S} x_{i} \wedge \bigwedge_{i \in\{1, \ldots, n\} \backslash S} y_{i}\right)
$$

- As a consequence, the construction of the CNF/DNF formula can take exponential time.

More Theorems

Theorem

A formula in CNF is a tautology iff every clause is a tautology.

Theorem

A formula in DNF is satisfiable iff at least one of its monomials is satisfiable.
\rightsquigarrow both proved easily with semantics of propositional logic

Discrete Mathematics in Computer Science Knowledge Bases

Malte Helmert, Gabriele Röger

University of Basel

Knowledge Bases: Example

> If not DrinkBeer, then EatFish. If EatFish and DrinkBeer, then not EatIceCream. If EatlceCream or not DrinkBeer, then not EatFish.

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\}
\end{aligned}
$$

Models for Sets of Formulas

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i. e., a set of propositional formulas over A.

A truth assignment \mathcal{I} for A is a model for KB (written: $\mathcal{I} \models \mathrm{KB}$) if \mathcal{I} is a model for every formula $\varphi \in \mathrm{KB}$.

German: Wissensbasis, Modell

Properties of Sets of Formulas

A knowledge base $K B$ is
■ satisfiable if KB has at least one model

- unsatisfiable if KB is not satisfiable

■ valid (or a tautology) if every interpretation is a model for KB

- falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Example I

Which of the properties does $K B=\{(A \wedge \neg B), \neg(B \vee A)\}$ have?

Example I

Which of the properties does $K B=\{(A \wedge \neg B), \neg(B \vee A)\}$ have?
KB is unsatisfiable:
For every model \mathcal{I} with $\mathcal{I} \models(\mathrm{A} \wedge \neg \mathrm{B})$ we have $\mathcal{I}(\mathrm{A})=1$. This means $\mathcal{I} \vDash(B \vee A)$ and thus $\mathcal{I} \not \vDash \neg(B \vee A)$.

Example I

Which of the properties does $K B=\{(A \wedge \neg B), \neg(B \vee A)\}$ have?
KB is unsatisfiable:
For every model \mathcal{I} with $\mathcal{I} \models(\mathrm{A} \wedge \neg \mathrm{B})$ we have $\mathcal{I}(\mathrm{A})=1$.
This means $\mathcal{I} \vDash(B \vee A)$ and thus $\mathcal{I} \not \vDash \neg(B \vee A)$.
This directly implies that KB is falsifiable, not satisfiable and no tautology.

Example II

Which of the properties does

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }),
\end{aligned}
$$

$$
((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} \text { have? }
$$

Example II

Which of the properties does

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatIceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} \text { have? }
\end{aligned}
$$

■ satisfiable, e. g. with

$$
\mathcal{I}=\{\text { EatFish } \mapsto 1, \text { DrinkBeer } \mapsto 1, \text { EatlceCream } \mapsto 0\}
$$

- thus not unsatisfiable
- falsifiable, e.g. with
$\mathcal{I}=\{$ EatFish $\mapsto 0$, DrinkBeer $\mapsto 0$, EatIceCream $\mapsto 1\}$
- thus not valid

Discrete Mathematics in Computer Science Logical Consequences

Malte Helmert, Gabriele Röger

University of Basel

Logical Consequences: Motivation

What's the secret of your long life?
I am on a strict diet: If I don't drink beer
 to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Claim: the woman drinks beer to every meal.
How can we prove this?

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.
We say that KB logically implies φ (written as $\mathrm{KB} \models \varphi$) if all models of KB are also models of φ.
also: KB logically entails φ, φ logically follows from KB , φ is a logical consequence of KB
German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.
We say that KB logically implies φ (written as $\mathrm{KB} \models \varphi$) if all models of KB are also models of φ.
also: KB logically entails φ, φ logically follows from KB , φ is a logical consequence of KB
German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded" : $\mathrm{KB} \models \varphi$ vs. $\mathcal{I} \models \varphi$.

Logical Consequences

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.
We say that KB logically implies φ (written as $\mathrm{KB} \models \varphi$) if all models of KB are also models of φ.
also: KB logically entails φ, φ logically follows from KB , φ is a logical consequence of KB
German: KB impliziert φ logisch, φ folgt logisch aus KB, φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": $\mathrm{KB} \models \varphi$ vs. $\mathcal{I} \models \varphi$.
What if $K B$ is unsatisfiable or the empty set?

Logical Consequences: Example

Let $\varphi=$ DrinkBeer and

$$
\mathrm{KB}=\{(\neg \text { DrinkBeer } \rightarrow \text { EatFish }),
$$

$(($ EatFish \wedge DrinkBeer $) \rightarrow \neg$ EatlceCream $)$, $(($ EatlceCream $\vee \neg$ DrinkBeer $) \rightarrow \neg$ EatFish $)\}$.

Show: $\mathrm{KB} \models \varphi$

Logical Consequences: Example

Let $\varphi=$ DrinkBeer and

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} .
\end{aligned}
$$

Show: $\mathrm{KB} \models \varphi$

Proof sketch.

Proof by contradiction: assume $\mathcal{I} \models \mathrm{KB}$, but $\mathcal{I} \not \vDash$ DrinkBeer.
Then it follows that $\mathcal{I} \models \neg$ DrinkBeer.
Because \mathcal{I} is a model of $K B$, we also have $\mathcal{I} \models(\neg$ DrinkBeer \rightarrow EatFish) and thus $\mathcal{I} \models$ EatFish. (Why?)
With an analogous argumentation starting from
$\mathcal{I} \models(($ EatlceCream $\vee \neg$ DrinkBeer $) \rightarrow \neg$ EatFish $)$
we get $\mathcal{I} \models \neg$ EatFish and thus $\mathcal{I} \not \models$ EatFish. \rightsquigarrow Contradiction!

Important Theorems about Logical Consequences

Theorem (Deduction Theorem)

$\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models(\varphi \rightarrow \psi)$
German: Deduktionssatz
Theorem (Contraposition Theorem)
$\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$
German: Kontrapositionssatz
Theorem (Contradiction Theorem)
$\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$
German: Widerlegungssatz
(without proof)

