

Discrete Mathematics in Computer Science

E1. Syntax and Semantics of Propositional Logic

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science

— E1. Syntax and Semantics of Propositional Logic

E1.1 Introduction to Formal Logic

E1.2 Syntax of Propositional Logic

E1.3 Semantics of Propositional Logic

E1.1 Introduction to Formal Logic

Why Logic?

- ▶ formalizing mathematics
 - ▶ What is a true statement?
 - ▶ What is a valid proof?
- ▶ basis of many tools in computer science
 - ▶ design of digital circuits
 - ▶ semantics of databases; query optimization
 - ▶ meaning of programming languages
 - ▶ verification of safety-critical hardware/software
 - ▶ knowledge representation in artificial intelligence
 - ▶ logic-based programming languages (e.g. Prolog)
 - ▶ ...

Propositional Logic

Propositional logic is a simple logic without numbers or objects.

Building blocks of propositional logic:

- ▶ **propositions** are statements that can be either true or false
- ▶ **atomic propositions** cannot be split into sub-propositions
- ▶ **logical connectives** connect propositions to form new ones

German: Aussagenlogik, Aussage, atomare Aussage, Junktoren

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- ▶ Every sentence is a proposition that consists of sub-propositions (e.g., "eat ice cream or don't drink beer").
- ▶ atomic propositions "drink beer", "eat fish", "eat ice cream"
- ▶ logical connectives "and", "or", negation, "if, then"

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- ▶ Every sentence is a proposition that consists of sub-propositions (e.g., "eat ice cream or don't drink beer").
- ▶ atomic propositions "drink beer", "eat fish", "eat ice cream"
- ▶ logical connectives "and", "or", negation, "if, then"

Examples for Building Blocks

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- ▶ Every sentence is a proposition that consists of sub-propositions (e.g., "eat ice cream or don't drink beer").
- ▶ atomic propositions "drink beer", "eat fish", "eat ice cream"
- ▶ logical connectives "and", "or", negation, "if, then"

Problems with Natural Language

If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

- ▶ "irrelevant" information

Problems with Natural Language

If I **don't** drink beer, then I eat fish.
 Whenever I have fish and beer, I **abstain** from ice cream.
 When I eat ice cream or **don't** drink beer, then I **never** touch fish.

- ▶ “irrelevant” information
- ▶ different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker
 Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

What is Next?

- ▶ What are meaningful (well-defined) sequences of atomic propositions and connectives?
 “if then EatIceCream not or DrinkBeer and” not meaningful
 → **syntax**
- ▶ What does it mean if we say that a statement is true?
 Is “DrinkBeer and EatFish” true?
 → **semantics**
- ▶ When does a statement logically follow from another?
 Does “EatFish” follow from “if DrinkBeer, then EatFish”?
 → **logical entailment**

German: Syntax, Semantik, logische Folgerung

Problems with Natural Language

If not DrinkBeer, then EatFish.
 If EatFish and DrinkBeer, then not EatIceCream.
 If EatIceCream or not DrinkBeer, then not EatFish.

- ▶ “irrelevant” information
- ▶ different formulations for the same connective/proposition

Exercise from U. Schöning: Logik für Informatiker
 Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

E1.2 Syntax of Propositional Logic

Syntax of Propositional Logic

Definition (Syntax of Propositional Logic)

Let A be a set of **atomic propositions**. The set of **propositional formulas** (over A) is inductively defined as follows:

- ▶ Every **atom a** $\in A$ is a propositional formula over A .
- ▶ If φ is a propositional formula over A , then so is its **negation** $\neg\varphi$.
- ▶ If φ and ψ are propositional formulas over A , then so is the **conjunction** $(\varphi \wedge \psi)$.
- ▶ If φ and ψ are propositional formulas over A , then so is the **disjunction** $(\varphi \vee \psi)$.

The **implication** $(\varphi \rightarrow \psi)$ is an abbreviation for $(\neg\varphi \vee \psi)$.

The **biconditional** $(\varphi \leftrightarrow \psi)$ is an abbrev. for $((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$.

German: atomare Aussage, aussagenlogische Formel, Atom, Negation, Konjunktion, Disjunktion, Implikation, Bikonditional

Syntax: Examples

Which of the following sequences of symbols are propositional formulas over the set of all possible letter sequences? Which kinds of formula are they (atom, conjunction, . . .)?

- ▶ $(A \wedge (B \vee C))$
- ▶ $((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg\text{EatIceCream})$
- ▶ $\neg(\wedge \text{Rain} \vee \text{StreetWet})$
- ▶ $\neg(\text{Rain} \vee \text{StreetWet})$
- ▶ $\neg(A = B)$
- ▶ $(A \wedge \neg(B \leftrightarrow C))$
- ▶ $(A \vee \neg(B \leftrightarrow C))$
- ▶ $((A \leq B) \wedge C)$
- ▶ $((A_1 \wedge A_2) \vee \neg(A_3 \leftrightarrow A_2))$

E1.3 Semantics of Propositional Logic

Meaning of Propositional Formulas?

So far propositional formulas are only symbol sequences without any meaning.

For example, what does this mean:
 $((\text{EatFish} \wedge \text{DrinkBeer}) \rightarrow \neg\text{EatIceCream})$?

▷ **We need semantics!**

Semantics of Propositional Logic

Definition (Semantics of Propositional Logic)

A **truth assignment** (or **interpretation**) for a set of atomic propositions A is a function $\mathcal{I} : A \rightarrow \{0, 1\}$.

A propositional formula φ (over A) holds under \mathcal{I} (written as $\mathcal{I} \models \varphi$) according to the following definition:

$$\begin{array}{lll} \mathcal{I} \models a & \text{iff} & \mathcal{I}(a) = 1 & \text{(for } a \in A) \\ \mathcal{I} \models \neg\varphi & \text{iff} & \text{not } \mathcal{I} \models \varphi \\ \mathcal{I} \models (\varphi \wedge \psi) & \text{iff} & \mathcal{I} \models \varphi \text{ and } \mathcal{I} \models \psi \\ \mathcal{I} \models (\varphi \vee \psi) & \text{iff} & \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \psi \end{array}$$

Question: should we define semantics of $(\varphi \rightarrow \psi)$ and $(\varphi \leftrightarrow \psi)$?

German: Wahrheitsbelegung/Interpretation, φ gilt unter \mathcal{I}

Semantics of Propositional Logic: Terminology

- ▶ For $\mathcal{I} \models \varphi$ we also say \mathcal{I} is a **model** of φ and that φ is **true** under \mathcal{I} .
- ▶ If φ does not hold under \mathcal{I} , we write this as $\mathcal{I} \not\models \varphi$ and say that \mathcal{I} is **no model** of φ and that φ is **false** under \mathcal{I} .
- ▶ **Note:** \models is not part of the formula but part of the **meta language** (speaking **about** a formula).

German: \mathcal{I} ist ein/kein Modell von φ ; φ ist wahr/falsch unter \mathcal{I} ; **Metasprache**

Exercise

Consider set $A = \{X, Y, Z\}$ of atomic propositions and formula $\varphi = (X \wedge \neg Y)$.

Specify an interpretation \mathcal{I} for A with $\mathcal{I} \models \varphi$.

Semantics: Example (1)

$$\begin{array}{l} A = \{\text{DrinkBeer}, \text{EatFish}, \text{EatIceCream}\} \\ \mathcal{I} = \{\text{DrinkBeer} \mapsto 1, \text{EatFish} \mapsto 0, \text{EatIceCream} \mapsto 1\} \\ \varphi = (\neg \text{DrinkBeer} \rightarrow \text{EatFish}) \end{array}$$

Do we have $\mathcal{I} \models \varphi$?

Semantics: Example (2)

Goal: prove $\mathcal{I} \models \varphi$.

Let us use the definitions we have seen:

$$\begin{aligned}\mathcal{I} \models \varphi &\text{ iff } \mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish}) \\ &\text{ iff } \mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \text{EatFish}) \\ &\text{ iff } \mathcal{I} \models \neg \neg \text{DrinkBeer} \text{ or } \mathcal{I} \models \text{EatFish}\end{aligned}$$

This means that if we want to prove $\mathcal{I} \models \varphi$, it is sufficient to prove

$$\mathcal{I} \models \neg \neg \text{DrinkBeer}$$

or to prove

$$\mathcal{I} \models \text{EatFish}.$$

We attempt to prove the first of these statements.

Semantics: Example (4)

Let $\mathcal{I} = \{\text{DrinkBeer} \mapsto 1, \text{EatFish} \mapsto 0, \text{EatIceCream} \mapsto 1\}$.

Proof that $\mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$:

- ① We have $\mathcal{I} \models \text{DrinkBeer}$
(uses defn. of \models for atomic props. and fact
 $\mathcal{I}(\text{DrinkBeer}) = 1$).
- ② From (1), we get $\mathcal{I} \not\models \neg \text{DrinkBeer}$
(uses defn. of \models for negations).
- ③ From (2), we get $\mathcal{I} \models \neg \neg \text{DrinkBeer}$
(uses defn. of \models for negations).
- ④ From (3), we get $\mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \psi)$ for all formulas ψ ,
in particular $\mathcal{I} \models (\neg \neg \text{DrinkBeer} \vee \text{EatFish})$
(uses defn. of \models for disjunctions).
- ⑤ From (4), we get $\mathcal{I} \models (\neg \text{DrinkBeer} \rightarrow \text{EatFish})$
(uses defn. of " \rightarrow ").

Semantics: Example (3)

New goal: prove $\mathcal{I} \models \neg \neg \text{DrinkBeer}$.

We again use the definitions:

$$\begin{aligned}\mathcal{I} \models \neg \neg \text{DrinkBeer} &\text{ iff not } \mathcal{I} \models \neg \text{DrinkBeer} \\ &\text{ iff not not } \mathcal{I} \models \text{DrinkBeer} \\ &\text{ iff } \mathcal{I} \models \text{DrinkBeer} \\ &\text{ iff } \mathcal{I}(\text{DrinkBeer}) = 1\end{aligned}$$

The last statement is true for our interpretation \mathcal{I} .

To write this up as a proof of $\mathcal{I} \models \varphi$,
we can go through this line of reasoning back-to-front,
starting from our assumptions and ending with the conclusion
we want to show.

Summary

- ▶ propositional logic based on atomic propositions
- ▶ syntax defines what well-formed formulas are
- ▶ semantics defines when a formula is true
- ▶ interpretations are the basis of semantics