

Discrete Mathematics in Computer Science

Fibonacci Series – Generating Functions

Malte Helmert, Gabriele Röger

University of Basel

Revisiting the Fibonacci Series

- In this section we study **generating functions**, a powerful method for solving recurrences.
- Generating functions allow us to **directly derive closed-form expressions** for recurrences.
- Full mastery of generating functions requires solid knowledge of calculus, in particular **power series**.
- Rather than develop the topic in its full depth, we will look at it within the context of a case study, proving the closed form of the Fibonacci series again.
- We leave out some of the more subtle mathematical aspects, such as the question of convergence of the power series used.

Power Series

Definition (power series)

Let $(a_n)_{n \in \mathbb{N}_0}$ be a sequence of real numbers.

The **power series** with **coefficients** (a_n) is the (possibly partial) function $g : \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$g(x) = \sum_{n=0}^{\infty} a_n x^n \quad \text{for all } x \in \mathbb{R}.$$

German: Potenzreihe

Notes: more general definitions exist, for example

- using $(x - c)^n$ instead of x^n for some $c \in \mathbb{R}$
- using complex instead of real numbers
- using multiple variables

Power Series – Examples

Reminder: $g(x) = \sum_{n=0}^{\infty} a_n x^n$

Examples:

- $a_n = 1$

$$\rightsquigarrow g(x) = \frac{1}{1-x} \text{ (only defined for } |x| < 1)$$

- $a_n = z^n$ for some $z \in \mathbb{R}$

$$\rightsquigarrow g(x) = \frac{1}{1-zx} \text{ (only defined for } |x| < 1/|z|)$$

- $a_n = \frac{1}{n!}$

$$\rightsquigarrow g(x) = e^x \text{ (defined for all } x)$$

- $a_n = \begin{cases} 0 & x \text{ is even} \\ \frac{(-1)^{(n-1)/2}}{n!} & x \text{ is odd} \end{cases}$

$$\rightsquigarrow g(x) = \sin x \text{ (defined for all } x)$$

Uniqueness of Power Series Representation

Theorem

Let g and h be power series with coefficients (a_n) and (b_n) .

Let $\varepsilon > 0$ such that for all $|x| < \varepsilon$:

- g and h converge, and
- $g(x) = h(x)$.

Then $a_n = b_n$ for all $n \in \mathbb{N}_0$.

Generating Functions

Definition (generating function)

Let $f : \mathbb{N}_0 \rightarrow \mathbb{R}$ be a function over the natural numbers.

The **generating function** for f is the power series
with coefficients $(f(n))_{n \in \mathbb{N}_0}$.

German: erzeugende Funktion

We are particularly interested in the case where f is defined
by a **recurrence**.

Generating Functions for Solving Recurrences

General approach for deriving closed-form expressions for a recurrence f using generating functions:

- 1 Let g be the generating function of f .
- 2 Use the recurrence to derive an **equation for g** .
- 3 Use algebra and calculus to **solve the equation**, i.e., derive a closed-form expression for g .
- 4 Use calculus to derive a **power series representation** $\sum_{n=0}^{\infty} a_n x^n$ for g .
- 5 We get **$f(n) = a_n$** as the closed-form expression of the recurrence.

Case Study: Fibonacci Numbers

We now illustrate the approach using the Fibonacci numbers F as an example for the recurrence f .

As a reminder, the Fibonacci numbers are defined as follows:

- $F(0) = 0$
- $F(1) = 1$
- $F(n) = F(n - 1) + F(n - 2)$ for all $n \geq 2$

Case Study: 1. Generating Function

1. Let g be the generating function of f .

$$g(x) = \sum_{n=0}^{\infty} F(n)x^n \quad \text{for } x \in \mathbb{R}$$

Note: The series does not converge for all x , but it converges for $|x| < \varepsilon$ for sufficiently small $\varepsilon > 0$. We omit details.

Case Study: 2. Equation for g from Recurrence

$$F(0) = 0 \quad F(1) = 1 \quad F(n) = F(n-1) + F(n-2) \text{ for all } n \geq 2$$

2. Use the recurrence to derive an equation for g .

$$\begin{aligned} g(x) &= \sum_{n=0}^{\infty} F(n)x^n = 0 \cdot x^0 + 1 \cdot x^1 + \sum_{n=2}^{\infty} (F(n-1) + F(n-2))x^n \\ &= x + \sum_{n=2}^{\infty} F(n-1)x^n + \sum_{n=2}^{\infty} F(n-2)x^n \\ &= x + \sum_{n=1}^{\infty} F(n)x^{n+1} + \sum_{n=0}^{\infty} F(n)x^{n+2} \\ &= x + x \sum_{n=1}^{\infty} F(n)x^n + x^2 \sum_{n=0}^{\infty} F(n)x^n \\ &= x + x \sum_{n=0}^{\infty} F(n)x^n + x^2 \sum_{n=0}^{\infty} F(n)x^n \\ &= x + x g(x) + x^2 g(x) \end{aligned}$$

Case Study: 3. Solve Equation for g

3. Use algebra and calculus to solve the equation, i.e., derive a closed-form expression for g .

$$\begin{aligned} g(x) &= x + xg(x) + x^2g(x) \\ \Rightarrow g(x) - xg(x) - x^2g(x) &= x \\ \Rightarrow g(x)(1 - x - x^2) &= x \\ \Rightarrow g(x) &= \frac{x}{1 - x - x^2} \end{aligned}$$

Case Study: 4. Power Series Representation for g (1)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g .

$$g(x) = \frac{x}{1-x-x^2} = xh(x) \text{ with } h(x) = \frac{1}{1-x-x^2}$$

Idea: **partial fraction decomposition**, i.e.,

find a, b, α, β such that $h(x) = \frac{a}{1-\alpha x} + \frac{b}{1-\beta x}$.

$$\begin{aligned}\frac{a}{1-\alpha x} + \frac{b}{1-\beta x} &= \frac{a(1-\beta x) + b(1-\alpha x)}{(1-\alpha x)(1-\beta x)} \\ &= \frac{a - a\beta x + b - b\alpha x}{1 - \alpha x - \beta x + \alpha\beta x^2} \\ &= \frac{(a+b) + (-a\beta - b\alpha)x}{1 + (-\alpha - \beta)x + \alpha\beta x^2}\end{aligned}$$

$$\rightsquigarrow a + b = 1, \quad -a\beta - b\alpha = 0, \quad -\alpha - \beta = -1, \quad \alpha\beta = -1$$

Case Study: 4. Power Series Representation for g (2)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g .

$$(1) a + b = 1, \quad (2) -a\beta - b\alpha = 0, \quad (3) -\alpha - \beta = -1, \quad (4) \alpha\beta = -1$$

- From (3): (5) $\beta = 1 - \alpha$
- Substituting (5) into (4):

$$\begin{aligned}\alpha(1 - \alpha) &= -1 \\ \Rightarrow \alpha - \alpha^2 &= -1 \\ \Rightarrow \alpha^2 - \alpha - 1 &= 0 \\ \Rightarrow \alpha &= \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \pm \sqrt{\frac{5}{4}} \\ \Rightarrow \alpha &= \frac{1 \pm \sqrt{5}}{2}\end{aligned}$$

⇒ The solutions are $\alpha = \varphi$ or $\alpha = \psi$ from the previous chapter. Continue with (6) $\alpha = \varphi$.

Case Study: 4. Power Series Representation for g (3)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g .

- (1) $a + b = 1$, (2) $-a\beta - b\alpha = 0$, (3) $-\alpha - \beta = -1$, (4) $\alpha\beta = -1$,
- (5) $\beta = 1 - \alpha$, (6) $\alpha = \varphi$

- Substituting (6) into (5): (7) $\beta = 1 - \alpha = 1 - \varphi = \psi$.
- From (1): (8) $b = 1 - a$
- Substituting (6), (7), (8) into (2):

$$\begin{aligned} & -a(1 - \varphi) - (1 - a)\varphi = 0 \\ \Rightarrow & -a + a\varphi - \varphi + a\varphi = 0 \\ \Rightarrow & a(2\varphi - 1) = \varphi \\ \Rightarrow & a = \frac{\varphi}{2\varphi - 1} = \frac{\varphi}{2 \cdot \frac{1}{2}(1 + \sqrt{5}) - 1} = \frac{1}{\sqrt{5}}\varphi \end{aligned}$$

Case Study: 4. Power Series Representation for g (4)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g .

$$(8) \quad b = 1 - a, \quad (9) \quad a = \frac{1}{\sqrt{5}}\varphi$$

■ Substituting (9) into (8):

$$\begin{aligned} b &= 1 - a \\ &= 1 - \frac{1}{\sqrt{5}}\varphi \\ &= \frac{\sqrt{5}}{\sqrt{5}} - \frac{\frac{1}{2}(1 + \sqrt{5})}{\sqrt{5}} \\ &= -\frac{1}{\sqrt{5}}\left(-\sqrt{5} + \frac{1}{2} + \frac{1}{2}\sqrt{5}\right) \\ &= -\frac{1}{\sqrt{5}}\left(\frac{1}{2} - \frac{1}{2}\sqrt{5}\right) \\ &= -\frac{1}{\sqrt{5}}\psi \end{aligned}$$

Case Study: 4. Power Series Representation for g (5)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g .

$$g(x) = xh(x), \quad h(x) = \frac{a}{1-\alpha x} + \frac{b}{1-\beta x},$$

$$\alpha = \varphi, \quad \beta = \psi, \quad a = \frac{1}{\sqrt{5}}\varphi, \quad b = -\frac{1}{\sqrt{5}}\psi$$

Plugging everything in:

$$\begin{aligned} g(x) &= x \left(\frac{1}{\sqrt{5}}\varphi \frac{1}{1-\varphi x} - \frac{1}{\sqrt{5}}\psi \frac{1}{1-\psi x} \right) = \frac{x}{\sqrt{5}} \left(\varphi \frac{1}{1-\varphi x} - \psi \frac{1}{1-\psi x} \right) \\ &= \frac{x}{\sqrt{5}} \left(\varphi \sum_{n=0}^{\infty} \varphi^n x^n - \psi \sum_{n=0}^{\infty} \psi^n x^n \right) \\ &= \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{\infty} \varphi^{n+1} x^{n+1} - \sum_{n=0}^{\infty} \psi^{n+1} x^{n+1} \right) \\ &= \frac{1}{\sqrt{5}} \left(\sum_{n=1}^{\infty} \varphi^n x^n - \sum_{n=1}^{\infty} \psi^n x^n \right) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n \\ &= \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n \end{aligned}$$

Case Study: 5. Extract Closed Form of Recurrence

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g .
5. We get $f(n) = a_n$ as the closed-form expression of the recurrence.

From

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n$$

we conclude:

$$F(n) = \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) \quad \text{for all } n \in \mathbb{N}_0$$

Concluding Remarks

- The approach requires analytical skill, but once understood, it can be applied to many similar recurrences.
- The same basic idea can be used to solve **all** recurrences of the form
 - $f(0) = a_0$
 - \dots
 - $f(k-1) = a_{k-1}$
 - $f(n) = c_1 f(n-1) + \dots + c_k f(n-k)$ for all $n \geq k$
- The Fibonacci numbers are the special case where $k = 2$, $a_0 = 0$, $a_1 = 1$, $c_1 = 1$, $c_2 = 1$.

Discrete Mathematics in Computer Science

Master Theorem for Divide-and-Conquer Recurrences

Malte Helmert, Gabriele Röger

University of Basel

Divide-and-Conquer Algorithms

- Recurrences frequently arise in the **run-time analysis** of **divide-and-conquer algorithms**.
- Examples:
 - **Mergesort**: sort a sequence by recursively sorting two smaller sequences, then merging them
 - **Binary search**: find an element in a sorted sequence by identifying which half of the sequence must contain the element, then recursively searching it
 - **Quickselect**: find the k -th smallest element in a sequence by recursive partitioning

Asymptotic Growth

- Run-time analysis usually focuses on the **asymptotic growth rate** of run-time.
- For example, we say “run-time grows **at most quadratically**” rather than saying that run-time for inputs of size n is $3n^2 + 17n + 8$.

advantages:

- much simpler to study
- can abstract from minor implementation details

Big- O , Big- Ω , Big- Θ

Definition (O , Ω , Θ)

Let $g : \mathbb{R}_0^+ \rightarrow \mathbb{R}$ be a function.

The sets of functions $O(g)$, $\Omega(g)$, $\Theta(g)$ are defined as follows:

- $O(g) = \{f : \mathbb{R}_0^+ \rightarrow \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R} \text{ s.t. } |f(n)| \leq C \cdot g(n) \text{ for all } n \geq n_0\}$
- $\Omega(g) = \{f : \mathbb{R}_0^+ \rightarrow \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R} \text{ s.t. } |f(n)| \geq C \cdot g(n) \text{ for all } n \geq n_0\}$
- $\Theta(g) = O(g) \cap \Omega(g)$

Notation:

- It is convention to say " $5n^2 + 7n \log_2 n = \Theta(n^2)$ " instead of " $f \in \Theta(g)$ for the functions f , g with $f(n) = 5n^2 + 7n \log_2 n$ and $g(n) = n^2$ ".
- ditto for O , Ω

Divide-and-Conquer Recurrences

A common instantiation of the **divide-and-conquer** algorithm scheme works as follows:

- For inputs of small size $n < C$, solve the problem directly.
- Otherwise:
 - ① Construct **A smaller inputs** of size n/B .
 - ② Recursively solve these inputs using the same algorithm.
 - ③ Compute the result from the recursively computed results.

If 1.+3. take time $f(n)$, the overall run-time for $n > C$ can be expressed as $T(n) = A \cdot T(n/B) + f(n)$.

- We call this a **divide-and-conquer recurrence**.
- We do not care about run-time for $n \leq C$ because it does not affect asymptotic analysis.

Divide-and-Conquer Recurrences – Examples

Reminder:

- ① Construct A smaller inputs of size n/B .
- ② Recursively solve these inputs using the same algorithm.
- ③ Compute the result from the recursively computed results.

divide-and-conquer recurrence: $T(n) = A \cdot T(n/B) + f(n)$

Examples:

- Mergesort: $A = 2, B = 2, f(n) = \Theta(n)$
- Binary Search: $A = 1, B = 2, f(n) = \Theta(1)$

Master Theorem for Divide-and-Conquer Recurrences

Theorem

Let $A \geq 1$, $B \geq 1$, and let T satisfy the divide-and-conquer recurrence $T(n) = A \cdot T(n/B) + f(n)$. Then:

- If $f(n) = O(n^{\log_B A - \varepsilon})$ for some $\varepsilon > 0$,
then $T(n) = \Theta(n^{\log_B A})$.
- If $f(n) = \Theta(n^{\log_B A})$,
then $T(n) = \Theta(n^{\log_B A} \log_2 n)$.
- If $f(n) = \Omega(n^{\log_B A + \varepsilon})$ for some $\varepsilon > 0$,
then $T(n) = \Theta(f(n))$.

We do not prove the theorem.

Application: Mergesort

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Mergesort: $A = 2, B = 2, f(n) = \Theta(n)$

Application: Mergesort

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Mergesort: $A = 2, B = 2, f(n) = \Theta(n)$
 $\rightsquigarrow \log_B A = \log_2 2 = 1$

Application: Mergesort

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Mergesort: $A = 2, B = 2, f(n) = \Theta(n)$

$$\rightsquigarrow \log_B A = \log_2 2 = 1$$

- $f(n) = O(n^{1-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^1)$
- $f(n) = \Theta(n^1) \rightsquigarrow T(n) = \Theta(n^1 \log_2 n)$
- $f(n) = \Omega(n^{1+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Application: Mergesort

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Mergesort: $A = 2, B = 2, f(n) = \Theta(n)$

$$\rightsquigarrow \log_B A = \log_2 2 = 1$$

- $f(n) = O(n^{1-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^1)$
- $f(n) = \Theta(n^1)$ (in red) $\rightsquigarrow T(n) = \Theta(n^1 \log_2 n)$
- $f(n) = \Omega(n^{1+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

$$\rightsquigarrow T(n) = \Theta(n \log n)$$

Application: Binary Search

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search: $A = 1, B = 2, f(n) = \Theta(1)$

Application: Binary Search

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search: $A = 1, B = 2, f(n) = \Theta(1)$
 $\rightsquigarrow \log_B A = \log_2 1 = 0$

Application: Binary Search

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search: $A = 1, B = 2, f(n) = \Theta(1)$
 $\rightsquigarrow \log_B A = \log_2 1 = 0$

- $f(n) = O(n^{0-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^0)$
- $f(n) = \Theta(n^0) \rightsquigarrow T(n) = \Theta(n^0 \log_2 n)$
- $f(n) = \Omega(n^{0+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Application: Binary Search

Reminder: $T(n) = A \cdot T(n/B) + f(n)$

- $f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
- $f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
- $f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search: $A = 1, B = 2, f(n) = \Theta(1)$

$$\rightsquigarrow \log_B A = \log_2 1 = 0$$

- $f(n) = O(n^{0-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^0)$
- $f(n) = \Theta(n^0)$ (in red) $\rightsquigarrow T(n) = \Theta(n^0 \log_2 n)$
- $f(n) = \Omega(n^{0+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

$$\rightsquigarrow T(n) = \Theta(\log n)$$

More Complex Cases

Some divide-and-conquer algorithms have more complicated recurrences because they do not split into even-sized pieces of predictable size.

Example:

- **Quicksort** with **random** pivotization: $f(n) = \Theta(n)$;
split n **uniformly randomly** into $1 \leq k \leq n$ and $n - 1 - k$
 \rightsquigarrow expected runtime $\Theta(n \log n)$
- **Quickselect** with **median-of-median** pivotization: $f(n) = \Theta(n)$;
one recursion on input size $n/5$,
one recursion on input size at most $n \cdot \frac{7}{10}$
 \rightsquigarrow runtime $\Theta(n)$

Here, we can try to use the Master theorem to derive hypotheses and then prove them by mathematical induction.