
Discrete Mathematics in Computer Science
Fibonacci Series – Generating Functions

Malte Helmert, Gabriele Röger

University of Basel

Revisiting the Fibonacci Series

In this section we study generating functions,
a powerful method for solving recurrences.

Generating functions allow us to directly derive
closed-form expressions for recurrences.

Full mastery of generating functions requires
solid knowledge of calculus, in particular power series.

Rather than develop the topic in its full depth,
we will look at it within the context of a case study,
proving the closed form of the Fibonacci series again.

We leave out some of the more subtle mathematical aspects,
such as the question of convergence of the power series used.

Power Series

Definition (power series)

Let (an)n∈N0 be a sequence of real numbers.
The power series with coefficients (an) is the (possibly partial)
function g : R→ R defined by

g(x) =
∞∑
n=0

anx
n for all x ∈ R.

German: Potenzreihe

Notes: more general definitions exist, for example

using (x − c)n instead of xn for some c ∈ R
using complex instead of real numbers

using multiple variables

Power Series – Examples

Reminder: g(x) =
∑∞

n=0 anx
n

Examples:

an = 1
 g(x) = 1

1−x (only defined for |x | < 1)

an = zn for some z ∈ R
 g(x) = 1

1−zx (only defined for |x | < 1/|z |)
an = 1

n!
 g(x) = ex (defined for all x)

an =

{
0 x is even
(−1)(n−1)/2

n! x is odd

 g(x) = sin x (defined for all x)

Uniqueness of Power Series Representation

Theorem

Let g and h be power series with coefficients (an) and (bn).
Let ε > 0 such that for all |x | < ε:

g and h converge, and

g(x) = h(x).

Then an = bn for all n ∈ N0.

Generating Functions

Definition (generating function)

Let f : N0 → R be a function over the natural numbers.
The generating function for f is the power series
with coefficients (f (n))n∈N0 .

German: erzeugende Funktion

We are particularly interested in the case where f is defined
by a recurrence.

Generating Functions for Solving Recurrences

General approach for deriving closed-form expressions
for a recurrence f using generating functions:

1 Let g be the generating function of f .

2 Use the recurrence to derive an equation for g .

3 Use algebra and calculus to solve the equation, i.e.,
derive a closed-form expression for g .

4 Use calculus to derive a power series representation∑∞
n=0 anx

n for g .

5 We get f (n) = an as the closed-form expression
of the recurrence.

Case Study: Fibonacci Numbers

We now illustrate the approach using the Fibonacci numbers F
as an example for the recurrence f .

As a reminder, the Fibonacci numbers are defined as follows:

F (0) = 0

F (1) = 1

F (n) = F (n − 1) + F (n − 2) for all n ≥ 2

Case Study: 1. Generating Function

1. Let g be the generating function of f .

g(x) =
∞∑
n=0

F (n)xn for x ∈ R

Note: The series does not converge for all x , but it converges
for |x | < ε for sufficiently small ε > 0. We omit details.

Case Study: 2. Equation for g from Recurrence

F (0) = 0 F (1) = 1 F (n) = F (n − 1) + F (n − 2) for all n ≥ 2

2. Use the recurrence to derive an equation for g .

g(x) =
∞∑
n=0

F (n)xn = 0 · x0 + 1 · x1 +
∞∑
n=2

(F (n − 1) + F (n − 2))xn

= x +
∞∑
n=2

F (n − 1)xn +
∞∑
n=2

F (n − 2)xn

= x +
∞∑
n=1

F (n)xn+1 +
∞∑
n=0

F (n)xn+2

= x + x
∞∑
n=1

F (n)xn + x2
∞∑
n=0

F (n)xn

= x + x
∞∑
n=0

F (n)xn + x2
∞∑
n=0

F (n)xn

= x + x g(x) + x2g(x)

Case Study: 3. Solve Equation for g

3. Use algebra and calculus to solve the equation, i.e.,

3.

derive a closed-form expression for g .

g(x) = x + x g(x) + x2g(x)

⇒ g(x)− x g(x)− x2g(x) = x

⇒ g(x)(1− x − x2) = x

⇒ g(x) =
x

1− x − x2

Case Study: 4. Power Series Representation for g (1)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

g(x) = x
1−x−x2 = xh(x) with h(x) = 1

1−x−x2

Idea: partial fraction decomposition, i.e.,
find a, b, α, β such that h(x) = a

1−αx + b
1−βx .

a

1− αx
+

b

1− βx
=

a(1− βx) + b(1− αx)

(1− αx)(1− βx)

=
a− aβx + b − bαx

1− αx − βx + αβx2

=
(a + b) + (−aβ − bα)x

1 + (−α− β)x + αβx2

 a + b = 1, −aβ − bα = 0, −α− β = −1, αβ = −1

Case Study: 4. Power Series Representation for g (2)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

(1) a + b = 1, (2) − aβ − bα = 0, (3) − α− β = −1, (4) αβ = −1

From (3): (5) β = 1− α
Substituting (5) into (4):

α(1− α) = −1

⇒ α− α2 = −1

⇒ α2 − α− 1 = 0

⇒ α =
1

2
±
√

1

4
+ 1 =

1

2
±
√

5

4

⇒ α =
1±
√

5

2

 The solutions are α = ϕ or α = ψ from the previous

chapter. Continue with (6) α = ϕ.

Case Study: 4. Power Series Representation for g (3)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

(1) a + b = 1, (2) − aβ − bα = 0, (3) − α− β = −1, (4) αβ = −1,

(5) β = 1 − α, (6) α = ϕ

Substituting (6) into (5): (7) β = 1− α = 1− ϕ = ψ.

From (1): (8) b = 1− a

Substituting (6), (7), (8) into (2):

− a(1− ϕ)− (1− a)ϕ = 0

⇒ − a + aϕ− ϕ+ aϕ = 0

⇒ a(2ϕ− 1) = ϕ

⇒ a =
ϕ

2ϕ− 1
=

ϕ

2 · 12(1 +
√

5)− 1
=

1√
5
ϕ

Case Study: 4. Power Series Representation for g (4)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

(8) b = 1 − a, (9) a = 1√
5
ϕ

Substituting (9) into (8):

b = 1− a

= 1− 1√
5
ϕ

=

√
5√
5
−

1
2(1 +

√
5)

√
5

= − 1√
5

(−
√

5 +
1

2
+

1

2

√
5)

= − 1√
5

(
1

2
− 1

2

√
5)

= − 1√
5
ψ

Case Study: 4. Power Series Representation for g (5)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

g(x) = xh(x), h(x) = a
1−αx + b

1−βx ,

α = ϕ, β = ψ, a = 1√
5
ϕ, b = − 1√

5
ψ

Plugging everything in:

g(x) = x

(
1√
5
ϕ

1

1− ϕx
− 1√

5
ψ

1

1− ψx

)
=

x√
5

(
ϕ

1

1− ϕx
− ψ 1

1− ψx

)
=

x√
5

(
ϕ

∞∑
n=0

ϕnxn − ψ
∞∑
n=0

ψnxn

)

=
1√
5

(∞∑
n=0

ϕn+1xn+1 −
∞∑
n=0

ψn+1xn+1

)

=
1√
5

(∞∑
n=1

ϕnxn −
∞∑
n=1

ψnxn

)
=
∞∑
n=1

1√
5

(ϕn − ψn)xn

=
∞∑
n=0

1√
5

(ϕn − ψn)xn

Case Study: 5. Extract Closed Form of Recurrence

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

5. We get f (n) = an as the closed-form expression of the recurrence.

From

g(x) =
∞∑
n=0

1√
5

(ϕn − ψn)xn

we conclude:

F (n) =
1√
5

(ϕn − ψn) for all n ∈ N0

Concluding Remarks

The approach requires analytical skill, but once understood,
it can be applied to many similar recurrences.

The same basic idea can be used to solve all recurrences
of the form

f (0) = a0
. . .
f (k − 1) = ak−1
f (n) = c1f (n − 1) + · · ·+ ck f (n − k) for all n ≥ k

The Fibonacci numbers are the special case where
k = 2, a0 = 0, a1 = 1, c1 = 1, c2 = 1.

Discrete Mathematics in Computer Science
Master Theorem for Divide-and-Conquer Recurrences

Malte Helmert, Gabriele Röger

University of Basel

Divide-and-Conquer Algorithms

Recurrences frequently arise in the run-time analysis
of divide-and-conquer algorithms.

Examples:

Mergesort: sort a sequence by recursively sorting
two smaller sequences, then merging them
Binary search: find an element in a sorted sequence
by identifying which half of the sequence must contain
the element, then recursively searching it
Quickselect: find the k-th smallest element in a sequence
by recursive partitioning

Asymptotic Growth

Run-time analysis usually focuses on
the asymptotic growth rate of run-time.

For example, we say “run-time grows at most quadratically”
rather than saying that run-time for inputs of size n
is 3n2 + 17n + 8.

advantages:

much simpler to study

can abstract from minor implementation details

Big-O, Big-Ω, Big-Θ

Definition (O, Ω, Θ)

Let g : R+
0 → R be a function.

The sets of functions O(g),Ω(g),Θ(g) are defined as follows:

O(g) = {f : R+
0 → R | there exist C , n0 ∈ R

O(g) = {f : R+
0 → R |

s.t. |f (n)| ≤ C · g(n) for all n ≥ n0}
Ω(g) = {f : R+

0 → R | there exist C , n0 ∈ R

O(g) = {f : R+
0 → R |

s.t. |f (n)| ≥ C · g(n) for all n ≥ n0}
Θ(g) = O(g) ∩ Ω(g)

Notation:

It is convention to say “5n2 + 7n log2 n = Θ(n2)”
instead of “f ∈ Θ(g) for the functions f , g
with f (n) = 5n2 + 7n log2 n and g(n) = n2”.

ditto for O, Ω

Divide-and-Conquer Recurrences

A common instantiation of the divide-and-conquer
algorithm scheme works as follows:

For inputs of small size n < C , solve the problem directly.

Otherwise:
1 Construct A smaller inputs of size n/B.
2 Recursively solve these inputs using the same algorithm.
3 Compute the result from the recursively computed results.

If 1.+3. take time f (n), the overall run-time for n > C
can be expressed as T (n) = A · T (n/B) + f (n).

We call this a divide-and-conquer recurrence.

We do not care about run-time for n ≤ C
because it does not affect asymptotic analysis.

Divide-and-Conquer Recurrences – Examples

Reminder:

1 Construct A smaller inputs of size n/B.

2 Recursively solve these inputs using the same algorithm.

3 Compute the result from the recursively computed results.

divide-and-conquer recurrence: T (n) = A · T (n/B) + f (n)

Examples:

Mergesort: A = 2, B = 2, f (n) = Θ(n)

Binary Search: A = 1, B = 2, f (n) = Θ(1)

Master Theorem for Divide-and-Conquer Recurrences

Theorem

Let A ≥ 1,B ≥ 1, and let T satisfy the divide-and-conquer
recurrence T (n) = A · T (n/B) + f (n). Then:

If f (n) = O(nlogB A−ε) for some ε > 0,
then T (n) = Θ(nlogB A).

If f (n) = Θ(nlogB A),
then T (n) = Θ(nlogB A log2 n).

If f (n) = Ω(nlogB A+ε) for some ε > 0,
then T (n) = Θ(f (n)).

We do not prove the theorem.

Application: Mergesort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Mergesort: A = 2, B = 2, f (n) = Θ(n)
 logB A = log2 2 = 1

f (n) = O(n1−ε) T (n) = Θ(n1)

f (n) = Θ(n1) T (n) = Θ(n1 log2 n)

f (n) = Ω(n1+ε) T (n) = Θ(f (n))

 T (n) = Θ(n log n)

Application: Mergesort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Mergesort: A = 2, B = 2, f (n) = Θ(n)
 logB A = log2 2 = 1

f (n) = O(n1−ε) T (n) = Θ(n1)

f (n) = Θ(n1) T (n) = Θ(n1 log2 n)

f (n) = Ω(n1+ε) T (n) = Θ(f (n))

 T (n) = Θ(n log n)

Application: Mergesort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Mergesort: A = 2, B = 2, f (n) = Θ(n)
 logB A = log2 2 = 1

f (n) = O(n1−ε) T (n) = Θ(n1)

f (n) = Θ(n1) T (n) = Θ(n1 log2 n)

f (n) = Ω(n1+ε) T (n) = Θ(f (n))

 T (n) = Θ(n log n)

Application: Mergesort

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Mergesort: A = 2, B = 2, f (n) = Θ(n)
 logB A = log2 2 = 1

f (n) = O(n1−ε) T (n) = Θ(n1)

f (n) = Θ(n1) T (n) = Θ(n1 log2 n)

f (n) = Ω(n1+ε) T (n) = Θ(f (n))

 T (n) = Θ(n log n)

Application: Binary Search

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Binary Search: A = 1, B = 2, f (n) = Θ(1)
 logB A = log2 1 = 0

f (n) = O(n0−ε) T (n) = Θ(n0)

f (n) = Θ(n0) T (n) = Θ(n0 log2 n)

f (n) = Ω(n0+ε) T (n) = Θ(f (n))

 T (n) = Θ(log n)

Application: Binary Search

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Binary Search: A = 1, B = 2, f (n) = Θ(1)
 logB A = log2 1 = 0

f (n) = O(n0−ε) T (n) = Θ(n0)

f (n) = Θ(n0) T (n) = Θ(n0 log2 n)

f (n) = Ω(n0+ε) T (n) = Θ(f (n))

 T (n) = Θ(log n)

Application: Binary Search

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Binary Search: A = 1, B = 2, f (n) = Θ(1)
 logB A = log2 1 = 0

f (n) = O(n0−ε) T (n) = Θ(n0)

f (n) = Θ(n0) T (n) = Θ(n0 log2 n)

f (n) = Ω(n0+ε) T (n) = Θ(f (n))

 T (n) = Θ(log n)

Application: Binary Search

Reminder: T (n) = A · T (n/B) + f (n)

f (n) = O(nlogB A−ε) T (n) = Θ(nlogB A)

f (n) = Θ(nlogB A) T (n) = Θ(nlogB A log2 n)

f (n) = Ω(nlogB A+ε) T (n) = Θ(f (n))

Binary Search: A = 1, B = 2, f (n) = Θ(1)
 logB A = log2 1 = 0

f (n) = O(n0−ε) T (n) = Θ(n0)

f (n) = Θ(n0) T (n) = Θ(n0 log2 n)

f (n) = Ω(n0+ε) T (n) = Θ(f (n))

 T (n) = Θ(log n)

More Complex Cases

Some divide-and-conquer algorithms have more complicated
recurrences because they do not split into even-sized pieces
of predictable size.

Example:

Quicksort with random pivotization: f (n) = Θ(n);
split n uniformly randomly into 1 ≤ k ≤ n and n − 1− k
 expected runtime Θ(n log n)

Quickselect with median-of-median pivotization: f (n) = Θ(n);
one recursion on input size n/5,
one recursion on input size at most n · 7

10
 runtime Θ(n)

Here, we can try to use the Master theorem to derive hypotheses
and then prove them by mathematical induction.

	Fibonacci Series – Generating Functions
	

	Master Theorem for Divide-and-Conquer Recurrences
	

