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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Revisiting the Fibonacci Series

I In this section we study generating functions,
a powerful method for solving recurrences.

I Generating functions allow us to directly derive
closed-form expressions for recurrences.

I Full mastery of generating functions requires
solid knowledge of calculus, in particular power series.

I Rather than develop the topic in its full depth,
we will look at it within the context of a case study,
proving the closed form of the Fibonacci series again.

I We leave out some of the more subtle mathematical aspects,
such as the question of convergence of the power series used.
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Power Series

Definition (power series)

Let (an)n∈N0 be a sequence of real numbers.
The power series with coefficients (an) is the (possibly partial)
function g : R→ R defined by

g(x) =
∞∑
n=0

anx
n for all x ∈ R.

German: Potenzreihe

Notes: more general definitions exist, for example

I using (x − c)n instead of xn for some c ∈ R
I using complex instead of real numbers

I using multiple variables
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Power Series – Examples

Reminder: g(x) =
∑∞

n=0 anx
n

Examples:

I an = 1
 g(x) = 1

1−x (only defined for |x | < 1)

I an = zn for some z ∈ R
 g(x) = 1

1−zx (only defined for |x | < 1/|z |)
I an = 1

n!
 g(x) = ex (defined for all x)

I an =

{
0 x is even
(−1)(n−1)/2

n! x is odd

 g(x) = sin x (defined for all x)
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Uniqueness of Power Series Representation

Theorem

Let g and h be power series with coefficients (an) and (bn).
Let ε > 0 such that for all |x | < ε:

I g and h converge, and

I g(x) = h(x).

Then an = bn for all n ∈ N0.
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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Generating Functions

Definition (generating function)

Let f : N0 → R be a function over the natural numbers.
The generating function for f is the power series
with coefficients (f (n))n∈N0 .

German: erzeugende Funktion

We are particularly interested in the case where f is defined
by a recurrence.
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Generating Functions for Solving Recurrences

General approach for deriving closed-form expressions
for a recurrence f using generating functions:

1 Let g be the generating function of f .

2 Use the recurrence to derive an equation for g .

3 Use algebra and calculus to solve the equation, i.e.,
derive a closed-form expression for g .

4 Use calculus to derive a power series representation∑∞
n=0 anx

n for g .

5 We get f (n) = an as the closed-form expression
of the recurrence.
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Case Study: Fibonacci Numbers

We now illustrate the approach using the Fibonacci numbers F
as an example for the recurrence f .

As a reminder, the Fibonacci numbers are defined as follows:

I F (0) = 0

I F (1) = 1

I F (n) = F (n − 1) + F (n − 2) for all n ≥ 2
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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Case Study: 1. Generating Function

1. Let g be the generating function of f .

g(x) =
∞∑
n=0

F (n)xn for x ∈ R

Note: The series does not converge for all x , but it converges
for |x | < ε for sufficiently small ε > 0. We omit details.
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Case Study: 2. Equation for g from Recurrence

F (0) = 0 F (1) = 1 F (n) = F (n − 1) + F (n − 2) for all n ≥ 2

2. Use the recurrence to derive an equation for g .

g(x) =
∞∑
n=0

F (n)xn = 0 · x0 + 1 · x1 +
∞∑
n=2

(F (n − 1) + F (n − 2))xn

= x +
∞∑
n=2

F (n − 1)xn +
∞∑
n=2

F (n − 2)xn

= x +
∞∑
n=1

F (n)xn+1 +
∞∑
n=0

F (n)xn+2

= x + x
∞∑
n=1

F (n)xn + x2
∞∑
n=0

F (n)xn

= x + x
∞∑
n=0

F (n)xn + x2
∞∑
n=0

F (n)xn

= x + x g(x) + x2g(x)
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Case Study: 3. Solve Equation for g

3. Use algebra and calculus to solve the equation, i.e.,

3.

derive a closed-form expression for g .

g(x) = x + x g(x) + x2g(x)

⇒ g(x)− x g(x)− x2g(x) = x

⇒ g(x)(1− x − x2) = x

⇒ g(x) =
x

1− x − x2
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Case Study: 4. Power Series Representation for g (1)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

g(x) = x
1−x−x2 = xh(x) with h(x) = 1

1−x−x2

Idea: partial fraction decomposition, i.e.,
find a, b, α, β such that h(x) = a

1−αx + b
1−βx .

a

1− αx
+

b

1− βx
=

a(1− βx) + b(1− αx)

(1− αx)(1− βx)

=
a− aβx + b − bαx

1− αx − βx + αβx2

=
(a + b) + (−aβ − bα)x

1 + (−α− β)x + αβx2

 a + b = 1, −aβ − bα = 0, −α− β = −1, αβ = −1
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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Case Study: 4. Power Series Representation for g (2)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

(1) a + b = 1, (2) − aβ − bα = 0, (3) − α− β = −1, (4) αβ = −1

I From (3): (5) β = 1− α
I Substituting (5) into (4):

α(1− α) = −1

⇒ α− α2 = −1

⇒ α2 − α− 1 = 0

⇒ α =
1

2
±
√

1

4
+ 1 =

1

2
±
√

5

4

⇒ α =
1±
√

5

2

 The solutions are α = ϕ or α = ψ from the previous

 

chapter. Continue with (6) α = ϕ.
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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Case Study: 4. Power Series Representation for g (3)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

(1) a + b = 1, (2) − aβ − bα = 0, (3) − α− β = −1, (4) αβ = −1,

(5) β = 1 − α, (6) α = ϕ

I Substituting (6) into (5): (7) β = 1− α = 1− ϕ = ψ.

I From (1): (8) b = 1− a

I Substituting (6), (7), (8) into (2):

− a(1− ϕ)− (1− a)ϕ = 0

⇒ − a + aϕ− ϕ+ aϕ = 0

⇒ a(2ϕ− 1) = ϕ

⇒ a =
ϕ

2ϕ− 1
=

ϕ

2 · 12(1 +
√

5)− 1
=

1√
5
ϕ
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Case Study: 4. Power Series Representation for g (4)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

(8) b = 1 − a, (9) a = 1√
5
ϕ

I Substituting (9) into (8):

b = 1− a

= 1− 1√
5
ϕ

=

√
5√
5
−

1
2(1 +

√
5)

√
5

= − 1√
5

(−
√

5 +
1

2
+

1

2

√
5)

= − 1√
5

(
1

2
− 1

2

√
5)

= − 1√
5
ψ
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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Case Study: 4. Power Series Representation for g (5)

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

g(x) = xh(x), h(x) = a
1−αx + b

1−βx ,

α = ϕ, β = ψ, a = 1√
5
ϕ, b = − 1√

5
ψ

Plugging everything in:

g(x) = x

(
1√
5
ϕ

1

1− ϕx
− 1√

5
ψ

1

1− ψx

)
=

x√
5

(
ϕ

1

1− ϕx
− ψ 1

1− ψx

)
=

x√
5

(
ϕ
∞∑
n=0

ϕnxn − ψ
∞∑
n=0

ψnxn

)

=
1√
5

( ∞∑
n=0

ϕn+1xn+1 −
∞∑
n=0

ψn+1xn+1

)

=
1√
5

( ∞∑
n=1

ϕnxn −
∞∑
n=1

ψnxn

)
=
∞∑
n=1

1√
5

(ϕn − ψn)xn

=
∞∑
n=0

1√
5

(ϕn − ψn)xn
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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Case Study: 5. Extract Closed Form of Recurrence

4. Use calculus to derive a power series representation
∑∞

n=0 anx
n for g .

5. We get f (n) = an as the closed-form expression of the recurrence.

From

g(x) =
∞∑
n=0

1√
5

(ϕn − ψn)xn

we conclude:

F (n) =
1√
5

(ϕn − ψn) for all n ∈ N0
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D2. Advanced Methods for Recurrences Fibonacci Series – Generating Functions

Concluding Remarks

I The approach requires analytical skill, but once understood,
it can be applied to many similar recurrences.

I The same basic idea can be used to solve all recurrences
of the form
I f (0) = a0
I . . .
I f (k − 1) = ak−1
I f (n) = c1f (n − 1) + · · ·+ ck f (n − k) for all n ≥ k

I The Fibonacci numbers are the special case where
k = 2, a0 = 0, a1 = 1, c1 = 1, c2 = 1.
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D2.2 Master Theorem for
Divide-and-Conquer Recurrences
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D2. Advanced Methods for Recurrences Master Theorem for Divide-and-Conquer Recurrences

Divide-and-Conquer Algorithms

I Recurrences frequently arise in the run-time analysis
of divide-and-conquer algorithms.

I Examples:
I Mergesort: sort a sequence by recursively sorting

two smaller sequences, then merging them
I Binary search: find an element in a sorted sequence

by identifying which half of the sequence must contain
the element, then recursively searching it

I Quickselect: find the k-th smallest element in a sequence
by recursive partitioning
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D2. Advanced Methods for Recurrences Master Theorem for Divide-and-Conquer Recurrences

Asymptotic Growth

I Run-time analysis usually focuses on
the asymptotic growth rate of run-time.

I For example, we say “run-time grows at most quadratically”
rather than saying that run-time for inputs of size n
is 3n2 + 17n + 8.

advantages:

I much simpler to study

I can abstract from minor implementation details
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D2. Advanced Methods for Recurrences Master Theorem for Divide-and-Conquer Recurrences

Big-O, Big-Ω, Big-Θ

Definition (O, Ω, Θ)

Let g : R+
0 → R be a function.

The sets of functions O(g),Ω(g),Θ(g) are defined as follows:

I O(g) = {f : R+
0 → R | there exist C , n0 ∈ R

O(g) = {f : R+
0 → R |

s.t. |f (n)| ≤ C · g(n) for all n ≥ n0}
I Ω(g) = {f : R+

0 → R | there exist C , n0 ∈ R

O(g) = {f : R+
0 → R |

s.t. |f (n)| ≥ C · g(n) for all n ≥ n0}
I Θ(g) = O(g) ∩ Ω(g)

Notation:

I It is convention to say “5n2 + 7n log2 n = Θ(n2)”
instead of “f ∈ Θ(g) for the functions f , g
with f (n) = 5n2 + 7n log2 n and g(n) = n2”.

I ditto for O, Ω

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science 24 / 30



D2. Advanced Methods for Recurrences Master Theorem for Divide-and-Conquer Recurrences

Divide-and-Conquer Recurrences

A common instantiation of the divide-and-conquer
algorithm scheme works as follows:

I For inputs of small size n < C , solve the problem directly.
I Otherwise:

1 Construct A smaller inputs of size n/B.
2 Recursively solve these inputs using the same algorithm.
3 Compute the result from the recursively computed results.

If 1.+3. take time f (n), the overall run-time for n > C
can be expressed as T (n) = A · T (n/B) + f (n).

I We call this a divide-and-conquer recurrence.

I We do not care about run-time for n ≤ C
because it does not affect asymptotic analysis.
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D2. Advanced Methods for Recurrences Master Theorem for Divide-and-Conquer Recurrences

Divide-and-Conquer Recurrences – Examples

Reminder:

1 Construct A smaller inputs of size n/B.

2 Recursively solve these inputs using the same algorithm.

3 Compute the result from the recursively computed results.

divide-and-conquer recurrence: T (n) = A · T (n/B) + f (n)

Examples:

I Mergesort: A = 2, B = 2, f (n) = Θ(n)

I Binary Search: A = 1, B = 2, f (n) = Θ(1)
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D2. Advanced Methods for Recurrences Master Theorem for Divide-and-Conquer Recurrences

Master Theorem for Divide-and-Conquer Recurrences

Theorem
Let A ≥ 1,B ≥ 1, and let T satisfy the divide-and-conquer
recurrence T (n) = A · T (n/B) + f (n). Then:

I If f (n) = O(nlogB A−ε) for some ε > 0,
then T (n) = Θ(nlogB A).

I If f (n) = Θ(nlogB A),
then T (n) = Θ(nlogB A log2 n).

I If f (n) = Ω(nlogB A+ε) for some ε > 0,
then T (n) = Θ(f (n)).

We do not prove the theorem.
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D2. Advanced Methods for Recurrences Master Theorem for Divide-and-Conquer Recurrences

Application: Mergesort

Reminder: T (n) = A · T (n/B) + f (n)

I f (n) = O(nlogB A−ε)  T (n) = Θ(nlogB A)

I f (n) = Θ(nlogB A)  T (n) = Θ(nlogB A log2 n)

I f (n) = Ω(nlogB A+ε)  T (n) = Θ(f (n))

Mergesort: A = 2, B = 2, f (n) = Θ(n)
 logB A = log2 2 = 1

I f (n) = O(n1−ε)  T (n) = Θ(n1)

I f (n) = Θ(n1)  T (n) = Θ(n1 log2 n)

I f (n) = Ω(n1+ε)  T (n) = Θ(f (n))

 T (n) = Θ(n log n)
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Application: Binary Search

Reminder: T (n) = A · T (n/B) + f (n)

I f (n) = O(nlogB A−ε)  T (n) = Θ(nlogB A)

I f (n) = Θ(nlogB A)  T (n) = Θ(nlogB A log2 n)

I f (n) = Ω(nlogB A+ε)  T (n) = Θ(f (n))

Binary Search: A = 1, B = 2, f (n) = Θ(1)
 logB A = log2 1 = 0

I f (n) = O(n0−ε)  T (n) = Θ(n0)

I f (n) = Θ(n0)  T (n) = Θ(n0 log2 n)

I f (n) = Ω(n0+ε)  T (n) = Θ(f (n))

 T (n) = Θ(log n)
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More Complex Cases

Some divide-and-conquer algorithms have more complicated
recurrences because they do not split into even-sized pieces
of predictable size.

Example:

I Quicksort with random pivotization: f (n) = Θ(n);
split n uniformly randomly into 1 ≤ k ≤ n and n − 1− k
 expected runtime Θ(n log n)

I Quickselect with median-of-median pivotization: f (n) = Θ(n);
one recursion on input size n/5,
one recursion on input size at most n · 7

10
 runtime Θ(n)

Here, we can try to use the Master theorem to derive hypotheses
and then prove them by mathematical induction.
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