Discrete Mathematics in Computer Science D2. Advanced Methods for Recurrences

Malte Helmert, Gabriele Röger

University of Basel

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Discrete Mathematics in Computer Science — D2. Advanced Methods for Recurrences

D2.1 Fibonacci Series – Generating Functions

D2.2 Master Theorem for Divide-and-Conquer Recurrences

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

D2.1 Fibonacci Series – Generating Functions

Revisiting the Fibonacci Series

- In this section we study generating functions, a powerful method for solving recurrences.
- Generating functions allow us to directly derive closed-form expressions for recurrences.
- Full mastery of generating functions requires solid knowledge of calculus, in particular power series.
- Rather than develop the topic in its full depth, we will look at it within the context of a case study, proving the closed form of the Fibonacci series again.
- We leave out some of the more subtle mathematical aspects, such as the question of convergence of the power series used.

Power Series

Definition (power series) Let $(a_n)_{n \in \mathbb{N}_0}$ be a sequence of real numbers. The power series with coefficients (a_n) is the (possibly partial) function $g : \mathbb{R} \to \mathbb{R}$ defined by

$$g(x)=\sum_{n=0}^\infty a_n x^n$$
 for all $x\in\mathbb{R}.$

German: Potenzreihe

Notes: more general definitions exist, for example

- using $(x c)^n$ instead of x^n for some $c \in \mathbb{R}$
- using complex instead of real numbers
- using multiple variables

Power Series – Examples

Reminder:
$$g(x) = \sum_{n=0}^{\infty} a_n x^n$$

Examples:

Uniqueness of Power Series Representation

Theorem

Let g and h be power series with coefficients (a_n) and (b_n) . Let $\varepsilon > 0$ such that for all $|x| < \varepsilon$:

g and h converge, and

$$\blacktriangleright g(x) = h(x).$$

Then $a_n = b_n$ for all $n \in \mathbb{N}_0$.

Generating Functions

Definition (generating function)

Let $f : \mathbb{N}_0 \to \mathbb{R}$ be a function over the natural numbers. The generating function for f is the power series with coefficients $(f(n))_{n \in \mathbb{N}_0}$.

German: erzeugende Funktion

We are particularly interested in the case where f is defined by a recurrence.

Generating Functions for Solving Recurrences

General approach for deriving closed-form expressions for a recurrence f using generating functions:

- Let g be the generating function of f.
- **2** Use the recurrence to derive an equation for g.
- Use algebra and calculus to solve the equation, i.e., derive a closed-form expression for g.
- Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.
- We get $f(n) = a_n$ as the closed-form expression of the recurrence.

Case Study: Fibonacci Numbers

We now illustrate the approach using the Fibonacci numbers F as an example for the recurrence f.

As a reminder, the Fibonacci numbers are defined as follows:

Case Study: 1. Generating Function

1. Let g be the generating function of f.

$$g(x) = \sum_{n=0}^{\infty} F(n) x^n$$
 for $x \in \mathbb{R}$

Note: The series does not converge for all x, but it converges for $|x| < \varepsilon$ for sufficiently small $\varepsilon > 0$. We omit details.

Case Study: 2. Equation for g from Recurrence

F(0) = 0 F(1) = 1 F(n) = F(n-1) + F(n-2) for all $n \ge 2$

2. Use the recurrence to derive an equation for g.

$$g(x) = \sum_{n=0}^{\infty} F(n)x^n = 0 \cdot x^0 + 1 \cdot x^1 + \sum_{n=2}^{\infty} (F(n-1) + F(n-2))x^n$$

= $x + \sum_{n=2}^{\infty} F(n-1)x^n + \sum_{n=2}^{\infty} F(n-2)x^n$
= $x + \sum_{n=1}^{\infty} F(n)x^{n+1} + \sum_{n=0}^{\infty} F(n)x^{n+2}$
= $x + x \sum_{n=1}^{\infty} F(n)x^n + x^2 \sum_{n=0}^{\infty} F(n)x^n$
= $x + x \sum_{n=0}^{\infty} F(n)x^n + x^2 \sum_{n=0}^{\infty} F(n)x^n$
= $x + x g(x) + x^2g(x)$

Case Study: 3. Solve Equation for g

3. Use algebra and calculus to solve the equation, i.e., derive a closed-form expression for g.

$$g(x) = x + x g(x) + x^{2}g(x)$$

$$\Rightarrow \quad g(x) - x g(x) - x^{2}g(x) = x$$

$$\Rightarrow \quad g(x)(1 - x - x^{2}) = x$$

$$\Rightarrow \quad g(x) = \frac{x}{1 - x - x^{2}}$$

Case Study: 4. Power Series Representation for g(1)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.

$$g(x) = \frac{x}{1-x-x^2} = xh(x)$$
 with $h(x) = \frac{1}{1-x-x^2}$

Idea: partial fraction decomposition, i.e., find a, b, α, β such that $h(x) = \frac{a}{1-\alpha x} + \frac{b}{1-\beta x}$.

$$\frac{a}{1-\alpha x} + \frac{b}{1-\beta x} = \frac{a(1-\beta x) + b(1-\alpha x)}{(1-\alpha x)(1-\beta x)}$$
$$= \frac{a-a\beta x + b - b\alpha x}{1-\alpha x - \beta x + \alpha \beta x^2}$$
$$= \frac{(a+b) + (-a\beta - b\alpha)x}{1+(-\alpha - \beta)x + \alpha \beta x^2}$$
$$\rightsquigarrow a+b=1, \quad -a\beta - b\alpha = 0, \quad -\alpha - \beta = -1, \quad \alpha\beta = -1$$

Case Study: 4. Power Series Representation for g (2) 4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.

(1) a + b = 1, (2) $-a\beta - b\alpha = 0$, (3) $-\alpha - \beta = -1$, (4) $\alpha\beta = -1$

• From (3): (5)
$$\beta = 1 - \alpha$$

Substituting (5) into (4):

$$\alpha(1-\alpha) = -1$$

$$\Rightarrow \quad \alpha - \alpha^2 = -1$$

$$\Rightarrow \quad \alpha^2 - \alpha - 1 = 0$$

$$\Rightarrow \quad \alpha = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1}{2} \pm \sqrt{\frac{5}{4}}$$

$$\Rightarrow \quad \alpha = \frac{1 \pm \sqrt{5}}{2}$$

 \rightsquigarrow The solutions are $\alpha = \varphi$ or $\alpha = \psi$ from the previous chapter. Continue with (6) $\alpha = \varphi$.

Case Study: 4. Power Series Representation for g (3)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g. (1) a + b = 1, (2) $-a\beta - b\alpha = 0$, (3) $-\alpha - \beta = -1$, (4) $\alpha\beta = -1$, (5) $\beta = 1 - \alpha$, (6) $\alpha = \varphi$

- Substituting (6) into (5): (7) $\beta = 1 \alpha = 1 \varphi = \psi$.
- From (1): (8) b = 1 a

Substituting (6), (7), (8) into (2):

$$-a(1-\varphi) - (1-a)\varphi = 0$$

$$\Rightarrow -a + a\varphi - \varphi + a\varphi = 0$$

$$\Rightarrow a(2\varphi - 1) = \varphi$$

$$\Rightarrow a = \frac{\varphi}{2\varphi - 1} = \frac{\varphi}{2 \cdot \frac{1}{2}(1 + \sqrt{5}) - 1} = \frac{1}{\sqrt{5}}\varphi$$

Case Study: 4. Power Series Representation for g(4)

4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g. (8) b = 1 - a, (9) $a = \frac{1}{\sqrt{5}}\varphi$

Substituting (9) into (8):

$$b = 1 - a$$

= $1 - \frac{1}{\sqrt{5}}\varphi$
= $\frac{\sqrt{5}}{\sqrt{5}} - \frac{\frac{1}{2}(1 + \sqrt{5})}{\sqrt{5}}$
= $-\frac{1}{\sqrt{5}}(-\sqrt{5} + \frac{1}{2} + \frac{1}{2}\sqrt{5})$
= $-\frac{1}{\sqrt{5}}(\frac{1}{2} - \frac{1}{2}\sqrt{5})$
= $-\frac{1}{\sqrt{5}}\psi$

Case Study: 4. Power Series Representation for g (5)

4. Use calculus to derive a power series representation
$$\sum_{n=0}^{\infty} a_n x^n$$
 for g .
 $g(x) = xh(x), \quad h(x) = \frac{a}{1-\alpha x} + \frac{b}{1-\beta x},$
 $\alpha = \varphi, \quad \beta = \psi, \quad a = \frac{1}{\sqrt{5}}\varphi, \quad b = -\frac{1}{\sqrt{5}}\psi$

Plugging everything in:

$$g(x) = x \left(\frac{1}{\sqrt{5}}\varphi \frac{1}{1-\varphi x} - \frac{1}{\sqrt{5}}\psi \frac{1}{1-\psi x}\right) = \frac{x}{\sqrt{5}} \left(\varphi \frac{1}{1-\varphi x} - \psi \frac{1}{1-\psi x}\right)$$
$$= \frac{x}{\sqrt{5}} \left(\varphi \sum_{n=0}^{\infty} \varphi^n x^n - \psi \sum_{n=0}^{\infty} \psi^n x^n\right)$$
$$= \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{\infty} \varphi^{n+1} x^{n+1} - \sum_{n=0}^{\infty} \psi^{n+1} x^{n+1}\right)$$
$$= \frac{1}{\sqrt{5}} \left(\sum_{n=1}^{\infty} \varphi^n x^n - \sum_{n=1}^{\infty} \psi^n x^n\right) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n$$
$$= \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n$$

Case Study: 5. Extract Closed Form of Recurrence

- 4. Use calculus to derive a power series representation $\sum_{n=0}^{\infty} a_n x^n$ for g.
- 5. We get $f(n) = a_n$ as the closed-form expression of the recurrence.

From

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} (\varphi^n - \psi^n) x^n$$

we conclude:

$$F(n) = rac{1}{\sqrt{5}}(arphi^n - \psi^n) ext{ for all } n \in \mathbb{N}_0$$

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

Concluding Remarks

- The approach requires analytical skill, but once understood, it can be applied to many similar recurrences.
- The same basic idea can be used to solve all recurrences of the form

D2.2 Master Theorem for Divide-and-Conquer Recurrences

Divide-and-Conquer Algorithms

- Recurrences frequently arise in the run-time analysis of divide-and-conquer algorithms.
- Examples:
 - Mergesort: sort a sequence by recursively sorting two smaller sequences, then merging them
 - Binary search: find an element in a sorted sequence by identifying which half of the sequence must contain the element, then recursively searching it
 - Quickselect: find the k-th smallest element in a sequence by recursive partitioning

Asymptotic Growth

- Run-time analysis usually focuses on the asymptotic growth rate of run-time.
- For example, we say "run-time grows at most quadratically" rather than saying that run-time for inputs of size n is $3n^2 + 17n + 8$.

advantages:

- much simpler to study
- can abstract from minor implementation details

Big-O, Big- Ω , Big- Θ

Definition (O, Ω, Θ) Let $g : \mathbb{R}_0^+ \to \mathbb{R}$ be a function. The sets of functions $O(g), \Omega(g), \Theta(g)$ are defined as follows: $\bullet O(g) = \{f : \mathbb{R}_0^+ \to \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R}$ s.t. $|f(n)| \le C \cdot g(n) \text{ for all } n \ge n_0\}$ $\bullet \Omega(g) = \{f : \mathbb{R}_0^+ \to \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R}$ s.t. $|f(n)| \ge C \cdot g(n) \text{ for all } n \ge n_0\}$ $\bullet \Theta(g) = O(g) \cap \Omega(g)$

Notation:

- ▶ It is convention to say " $5n^2 + 7n \log_2 n = \Theta(n^2)$ " instead of " $f \in \Theta(g)$ for the functions f, gwith $f(n) = 5n^2 + 7n \log_2 n$ and $g(n) = n^2$ ".
- ditto for O, Ω

Divide-and-Conquer Recurrences

A common instantiation of the divide-and-conquer algorithm scheme works as follows:

- For inputs of small size n < C, solve the problem directly.
- Otherwise:
 - Construct A smaller inputs of size n/B.
 - 2 Recursively solve these inputs using the same algorithm.
 - Ompute the result from the recursively computed results.
- If 1.+3. take time f(n), the overall run-time for n > C can be expressed as $T(n) = A \cdot T(n/B) + f(n)$.
 - ► We call this a divide-and-conquer recurrence.
 - We do not care about run-time for n ≤ C because it does not affect asymptotic analysis.

Divide-and-Conquer Recurrences – Examples

Reminder:

- **1** Construct A smaller inputs of size n/B.
- 2 Recursively solve these inputs using the same algorithm.
- Ompute the result from the recursively computed results.

divide-and-conquer recurrence: $T(n) = A \cdot T(n/B) + f(n)$

Examples:

- Mergesort: A = 2, B = 2, $f(n) = \Theta(n)$
- Binary Search: A = 1, B = 2, $f(n) = \Theta(1)$

Master Theorem for Divide-and-Conquer Recurrences

Theorem
Let
$$A \ge 1, B \ge 1$$
, and let T satisfy the divide-and-conquer
recurrence $T(n) = A \cdot T(n/B) + f(n)$. Then:
If $f(n) = O(n^{\log_B A - \varepsilon})$ for some $\varepsilon > 0$,
then $T(n) = \Theta(n^{\log_B A})$.
If $f(n) = \Theta(n^{\log_B A})$,
then $T(n) = \Theta(n^{\log_B A} \log_2 n)$.
If $f(n) = \Omega(n^{\log_B A + \varepsilon})$ for some $\varepsilon > 0$,
then $T(n) = \Theta(f(n))$.

We do not prove the theorem.

Application: Mergesort

Reminder:
$$T(n) = A \cdot T(n/B) + f(n)$$

 $\blacktriangleright f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
 $\blacktriangleright f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
 $\blacktriangleright f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Mergesort: A = 2, B = 2, $f(n) = \Theta(n)$ $\rightarrow \log_B A = \log_2 2 = 1$

 $\rightsquigarrow T(n) = \Theta(n \log n)$

Application: Binary Search

Reminder:
$$T(n) = A \cdot T(n/B) + f(n)$$

 $\blacktriangleright f(n) = O(n^{\log_B A - \varepsilon}) \rightsquigarrow T(n) = \Theta(n^{\log_B A})$
 $\blacktriangleright f(n) = \Theta(n^{\log_B A}) \rightsquigarrow T(n) = \Theta(n^{\log_B A} \log_2 n)$
 $\blacktriangleright f(n) = \Omega(n^{\log_B A + \varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

Binary Search:
$$A = 1$$
, $B = 2$, $f(n) = \Theta(1)$
 $\rightsquigarrow \log_B A = \log_2 1 = 0$

►
$$f(n) = O(n^{0-\varepsilon}) \rightsquigarrow T(n) = \Theta(n^0)$$

► $f(n) = \Theta(n^0) \rightsquigarrow T(n) = \Theta(n^0 \log_2 n)$
► $f(n) = \Omega(n^{0+\varepsilon}) \rightsquigarrow T(n) = \Theta(f(n))$

 $\rightsquigarrow T(n) = \Theta(\log n)$

More Complex Cases

Some divide-and-conquer algorithms have more complicated recurrences because they do not split into even-sized pieces of predictable size.

Example:

- Quicksort with random pivotization: f(n) = Θ(n); split n uniformly randomly into 1 ≤ k ≤ n and n − 1 − k ~ expected runtime Θ(n log n)
- Quickselect with median-of-median pivotization: f(n) = Θ(n); one recursion on input size n/5, one recursion on input size at most n ⋅ ⁷/₁₀ ~ runtime Θ(n)

Here, we can try to use the Master theorem to derive hypotheses and then prove them by mathematical induction.