Discrete Mathematics in Computer Science
C4. Further Topics in Graph Theory

Malte Helmert, Gabriele Röger

University of Basel
C4.1 Subgraphs

Discrete Mathematics in Computer Science

- C4. Further Topics in Graph Theory

C4.1 Subgraphs

C4.2 Isomorphism

C4.3 Planarity and Minors

Overview

- We conclude our discussion of (di-) graphs by giving a brief tour of some further topics in graph theory that we do not have time to discuss in depth.
- In the interest of brevity (and hence wider coverage of topics), we do not give proofs for the results in this chapter.

Definition (subgraph)

A subgraph of a graph (V, E) is a graph $\left(V^{\prime}, E^{\prime}\right)$
with $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$.
A subgraph of a digraph (N, A) is a digraph $\left(N^{\prime}, A^{\prime}\right)$
with $N^{\prime} \subseteq N$ and $A^{\prime} \subseteq A$.

German: Teilgraph/Untergraph

Question: Can we choose V^{\prime} and E^{\prime} arbitrarily?
The subgraph relationship defines a partial order on graphs (and on digraphs).

graph (V, E)

subgraph $\left(V^{\prime}, E^{\prime}\right)$

[^0]| C4. Further Topics in Graph Theory
 Induced Subgraphs (2) | Subgraphs |
| :---: | :---: |
| Definition (induced subgraph)
 Let $G=(N, A)$ be a digraph, and let $N^{\prime} \subseteq N$.
 The subgraph of G induced by N^{\prime} is the digraph $\left(N^{\prime}, A^{\prime}\right)$ with $A^{\prime}=\left\{(u, v) \in A \mid u, v \in N^{\prime}\right\}$.
 We say that G^{\prime} is an induced subgraph of $G=(N, A)$ if G^{\prime} is the subgraph of G induced by N^{\prime} for any set of nodes $N^{\prime} \subseteq N$. | |
| German: induzierter Teilgraph (eines gerichteten Graphen) | |

Let $G=(N, A)$ be a digraph, and let $N^{\prime} \subseteq N$.
The subgraph of G induced by N^{\prime} is the digraph $\left(N^{\prime}, A^{\prime}\right)$
with $A^{\prime}=\left\{(u, v) \in A \mid u, v \in N^{\prime}\right\}$.
We say that G^{\prime} is an induced subgraph of $G=(N, A)$ if G^{\prime} is
German: induzierter Teilgraph (eines gerichteten Graphen)
Definition (induced subgraph)
Let $G=(V, E)$ be a graph, and let $V^{\prime} \subseteq V$.
The subgraph of G induced by V^{\prime} is the graph $\left(V^{\prime}, E^{\prime}\right)$
with $E^{\prime}=\left\{\{u, v\} \in E \mid u, v \in V^{\prime}\right\}$.
We say that G^{\prime} is an induced subgraph of $G=(V, E)$ if G^{\prime} is
the subgraph of G induced by V^{\prime} for any set of vertices $V^{\prime} \subseteq V$.

graph (V, E)

(D)

Is this an induced subgraph?

graph (V, E)

(D)
(G)

This is an induced subgraph.

- Induced subgraphs are subgraphs.
- They are the largest (in terms of the set of edges) subgraphs with any given set of vertices.
- A typical example are subgraphs induced by the connected components of a graph.
- The subgraphs induced by the connected components of a forest are trees.

Counting Subgraphs

- How many subgraphs does a graph (V, E) have?
- How many induced subgraph does a graph (V, E) have?

For the second question, the answer is $2^{|V|}$.
The first question is in general not easy to answer because vertices and edges of a subgraph cannot be chosen independently.

Example (subgraphs of a complete graph)
A complete graph with n vertices (i.e., with all possible $\binom{n}{2}$ edges) has $\sum_{k=0}^{n}\binom{n}{k} 2\binom{k}{2}$ subgraphs. (Why?)
for $n=10$: 1024 induced subgraphs, 35883905263781 subgraphs

C4.2 Isomorphism

What is the difference between these graphs?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

- In many cases, the "names" of the vertices of a graph do not have any particular semantic meaning.
- Often, we care about the structure of the graph, i.e., the relationship between the vertices and edges, but not what we call the different vertices.
- This is captured by the concept of isomorphism.

```
    Isomorphism - Definition
```

Definition (Isomorphism)
Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be graphs.
An isomorphism from G to G^{\prime} is a bijective function
$\sigma: V \rightarrow V^{\prime}$ such that for all $u, v \in V$:

$$
\{u, v\} \in E \quad \text { iff } \quad\{\sigma(u), \sigma(v)\} \in E^{\prime}
$$

If there exists an isomorphism from G to G^{\prime}, we say that they are isomorphic, in symbols $G \cong G^{\prime}$.

German: Isomorphismus, isomorph

- derives from Ancient Greek for "equally shaped/formed"
- analogous definition for digraphs omitted

graph (V, E)

$\operatorname{graph}\left(V^{\prime}, E^{\prime}\right)$
- The identity function is an isomorphism.
- The inverse of an isomorphism is an isomorphism.
- The composition of two isomorphisms is an isomorphism (when defined over matching sets of vertices)

It follows that being isomorphic is an equivalence relation.
$\sigma=\{\mathrm{A} \mapsto 1, B \mapsto 2, C \mapsto 3, D \mapsto 4, E \mapsto 5, F \mapsto 6, G \mapsto 7\}$

- for example: $\{\mathrm{A}, \mathrm{B}\} \in E$ and $\{\sigma(\mathrm{A}), \sigma(\mathrm{B})\}=\{1,2\} \in E^{\prime}$
- for example: $\{\mathrm{A}, \mathrm{D}\} \notin E$ and $\{\sigma(\mathrm{A}), \sigma(\mathrm{D})\}=\{1,4\} \notin E^{\prime}$

somorphic

$$
\sigma=\{\mathrm{A} \mapsto 1, \mathrm{~B} \mapsto 3, \mathrm{C} \mapsto 5, \mathrm{D} \mapsto 2, \mathrm{E} \mapsto 4\}
$$

C4. Further Topics in Graph Theory
Isomorphic or Not? (2)

isomorphic
\rightsquigarrow in fact, the same graph!

$$
\sigma=\{\mathrm{A} \mapsto \mathrm{~A}, \mathrm{~B} \mapsto \mathrm{~B}, \mathrm{C} \mapsto \mathrm{C}, \mathrm{D} \mapsto \mathrm{D}\}
$$

not isomorphic
There does not even exist a bijection between the vertices.

isomorphic or not?

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

C4. Further Topics in Graph Theory
Isomorphic or Not? (5)

not isomorphic

- The left graph has cycles of length 4 (e.g., $\langle A, B, G, F, A\rangle$).
- The right graph does not.
- Having a cycle of a given length is an invariant.
- Determining if two graphs are isomorphic
is an algorithmic problem that has been famously resistant to studying its complexity
- For more than 40 years, we have not known if polynomial algorithms exist, and we also do not know if it belongs to the famous class of NP-complete problems.
- In 2015, László Babai announced an algorithm with quasi-polynomial (worse than polynomial, better than exponential) runtime.

Further Reading

Martin Grohe, Pascal Schweitzer.
The Graph Isomorphism Problem.
Communications of the ACM 63(11):128-134, November 2020.
https://dl.acm.org/doi/10.1145/3372123

- An isomorphism σ between a graph G and itself is called an automorphism or symmetry of G.
- For every graph, its symmetries are permutations of its vertex set that form a group (with function composition as the binary operation) called the automorphism group of the graph.

Example: the symmetric group S_{n} is the automorphism group of the complete graph with the vertices $\{1, \ldots, n\}$.

C4. Further Topics in Graph Theory
Automorphism Group of a Graph

What are the symmetries?

- one example is the rotation $\sigma_{1}=\{1 \mapsto 2,2 \mapsto 3,3 \mapsto 4,4 \mapsto 5,5 \mapsto 1\}$
- another example is the reflection $\sigma_{2}=\{1 \mapsto 5,2 \mapsto 4,3 \mapsto 3,4 \mapsto 2,5 \mapsto 1\}$
- There are 10 symmetries in total,
and they are all generated by σ_{1} and σ_{2}.
- We often draw graphs as 2-dimensional pictures.
- When we do so, we usually try to draw them in such a way that different edges do not cross.
- This often makes the picture neater and the edges easier to visualize.
- A picture of a graph with no edge crossings is called a planar embedding.
- A graph for which a planar embedding exists is called planar.

not a planar embedding

planar embedding

The complete graph over 4 vertices is planar.

C4. Further Topics in Graph Theory Planar Graphs Definition (planar) A graph $G=(V, E)$ is called planar if there exists a planar embedding of G, i.e., a picture of G in the Euclidean plane in which no two edges intersect. German: planar Notes: We do not formally define planar embeddings, as this is nontrivial and not necessary for our discussion. In general, we may draw edges as arbitrary curves. Has a planar embedding iff it has a planar embedding where all edges are straight lines.
halte Helmert, Gabriele Röger (University of Discrete Mathematics in computer Science

Planarity and Minors
Planar Graphs - Discussion

- Planar graphs arise in many practical applications.
- Many computational problems are easier for planar graphs.
- For example, every planar graph can be coloured with at most 4 colours (i.e., we can assign one of four colours to each vertex such that two neighbours always have different colours).
- For this reason, planarity is of great practical interest.
- How can we recognize that a graph is planar?
- How can we prove that a graph is not planar?

The complete graph K_{5} over 5 vertices is not planar. (We do not prove this result.)

- The two non-planar graphs K_{5} and $K_{3,3}$ are special:
they are the smallest non-planar graphs.
- In fact, something much more powerful holds: a graph is planar iff it does not contain K_{5} or $K_{3,3}$.
- The notion of containment we need here is related to the notion of subgraphs that we introduced, but a bit more complex. We will discuss it next.

Edge Contraction

We say that $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ can be obtained from graph $G=(V, E)$
by contracting the edge $\{u, v\} \in E$ if

- $V^{\prime}=(V \backslash\{u, v\}) \cup\{u v\}$, where $u v \notin V$ is a new vertex
- $E^{\prime}=\{e \in E \mid e \cap\{u, v\}=\emptyset\} \cup$
$\{\{u v, w\} \mid\{u, w\} \in E$ or $\{v, w\} \in E\}$.
In words, we combine the vertices u and v
(which must be connected by an edge) into a single vertex $u v$.
The neighbours of $u v$ are the union of the neighbours of u and the neighbours of v.

Definition (minor)

We say that a graph G^{\prime} is a minor of a graph G if it can be obtained from G through a sequence of transformations of the following kind:
(1) remove a vertex (of degree 0) from the graph
(2) remove an edge from the graph
(3) contract an edge in the graph

German: Minor (plural: Minoren)
Notes:

- If we only allowed the first two transformations, we would obtain the regular subgraph relationship.
- It follows that every subgraph is a minor, but the opposite is not true in general.

Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science
C4. Further Topics in Graph Theory
Wagner's Theorem

Theorem (Wagner's Theorem)
A graph is planar iff it does not contain K_{5} or $K_{3,3}$ as a minor.

- Being planar is what is called a minor-hereditary property: if G is planar, then all its minors are also planar.
- There exist many other important such properties.
- One example is acyclicity.

How could one prove that a property is minor-hereditary?

Theorem (Graph minor theorem)
Let Π be a minor-hereditary properties of graphs.
Then there exists a finite set of forbidden minors $F(\Pi)$ such that the following result holds:

A graph has property Π iff it does not have any graph from $F(\Pi)$ as a minor.

German: Minorentheorem

- The graph minor theorem is also known as the Robertson-Seymour theorem.
- It was proved by Robertson and Seymour in a series of 20 papers between 1983-2004, totalling 500+ pages.

Examples:

- the forbidden minors for planarity are K_{5} and $K_{3,3}$
- the (only) forbidden minor for acyclicity is K_{3}, the complete graph with 3 vertices (a.k.a. the 3-cycle graph)

C4. Further Topics in Graph Theory
Remarks on the Graph Minor Theorem (2)

- In principle, for every fixed graph H, we can test if H is a minor of a graph G in polynomial time in the size of G.
- This implies that every minor-hereditary property can be tested in polynomial time.
- However, the constant factors involved in the known general algorithms for testing minors (which depend on $|H|$) are so astronomically huge as to make them infeasible in practice.
- It is one of the most important results in graph theory.

[^0]: Malte Helmert, Gabriele Röger (University of Discrete Mathematics in Computer Science

