

Discrete Mathematics in Computer Science

Acyclic (Di-) Graphs

Malte Helmert, Gabriele Röger

University of Basel

Acyclic

Similarly to connectedness, the presence or absence of **cycles** is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)

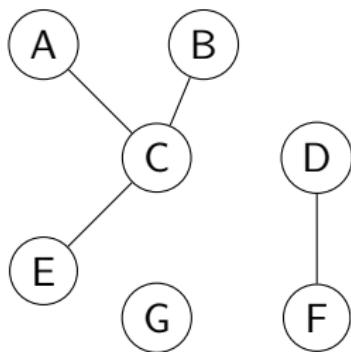
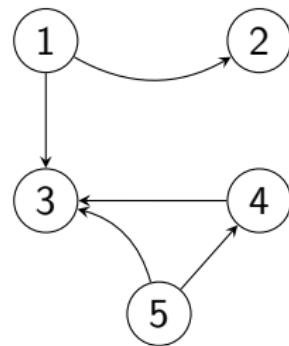
A graph or digraph G is called **acyclic** if there exists no cycle in G .

An acyclic graph is also called a **forest**.

An acyclic digraph is also called a **DAG** (directed acyclic graph).

German: azyklisch/kreisfrei, Wald, DAG

Acyclic (Di-) Graphs – Example



Trees

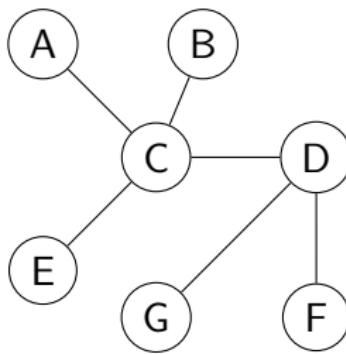
Definition (tree)

A connected forest is called a **tree**.

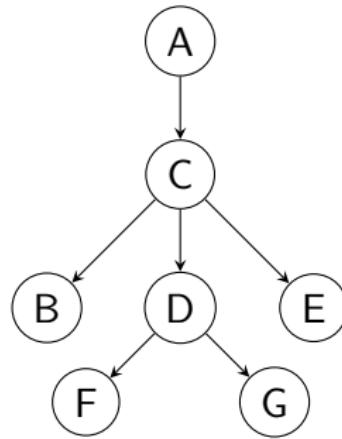
German: Baum

- **Tree** is also a word for a recursive data structure, which consists of either a **leaf** or a **parent node** with one or more **children**, which are themselves trees.
- This other kind of tree is also called a **rooted tree** to distinguish it from a tree as a graph.
- The two meanings of “tree” are distinct but closely related.

Tree Graphs vs. Rooted Trees – Example (1)

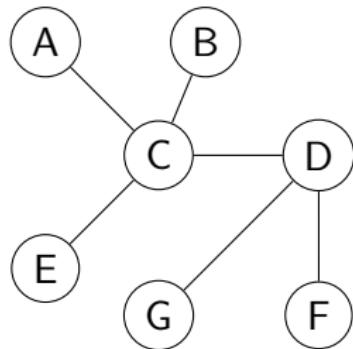


tree graph

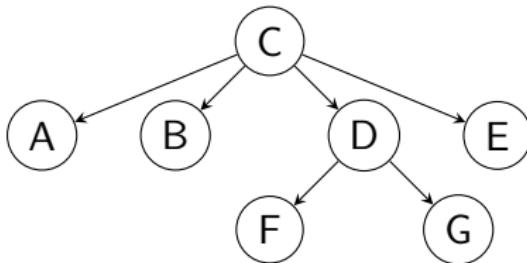


rooted tree with root A

Tree Graphs vs. Rooted Trees – Example (2)

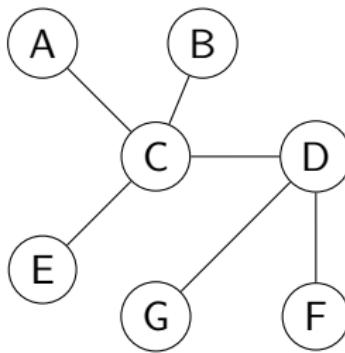


tree graph

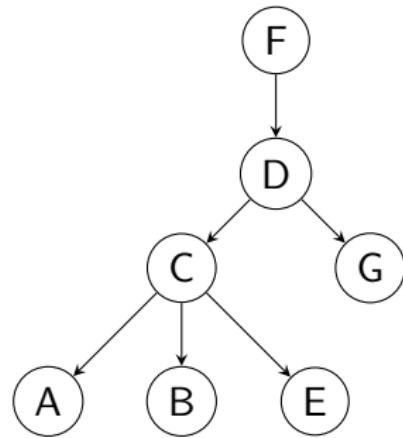


rooted tree with root *C*

Tree Graphs vs. Rooted Trees – Example (3)



tree graph



rooted tree with root *F*

From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:

- Select any vertex v . Make v the root of the tree.
- Initially, v is the only **pending** vertex,
and there are no **processed** vertices.
- As long as there are pending vertices:
 - Select any pending vertex u .
 - Make all neighbours v of u that are not yet processed
children of u and mark them as pending.
 - Change u from pending to processed.

We do not prove that this procedure always works. A proof of correctness can be given based on the results we show next.

Discrete Mathematics in Computer Science

Unique Paths in Trees

Malte Helmert, Gabriele Röger

University of Basel

Unique Paths in Trees

Theorem

Let $G = (V, E)$ be a graph.

Then G is a tree iff there exists exactly one path from any vertex $u \in V$ to any vertex $v \in V$.

Unique Paths In Trees – Proof (1)

Proof.

(\Rightarrow): G is a tree. Let $u, v \in V$.

We must show that there exists exactly one path from u to v .

We know that at least one path exists because G is connected.

It remains to show that there cannot be two paths from u to v .

If $u = v$, there is only one path (the empty one).

(Any longer path would have to repeat a vertex.)

We assume that there exist two different paths from u to v

($u \neq v$) and derive a contradiction.

...

Unique Paths In Trees – Proof (2)

Proof (continued).

Let $\pi = \langle v_0, v_1, \dots, v_n \rangle$ and $\pi' = \langle v'_0, v'_1, \dots, v'_m \rangle$ be the two paths (with $v_0 = v'_0 = u$ and $v_n = v'_m = v$).

Let i be the smallest index with $v_i \neq v'_i$, which must exist because the two paths are different, and neither can be a prefix of the other (else v would be repeated in the longer path).

We have $i \geq 1$ because $v_0 = v'_0$.

Let $j \geq i$ be the smallest index such that $v_j = v'_k$ for some $k \geq i$.

Such an index must exist because $v_n = v'_m$.

Then $\langle v_{i-1}, \dots, v_{j-1}, v'_k, \dots, v'_{i-1} \rangle$ is a cycle, which contradicts the requirement that G is a tree.

...

Unique Paths In Trees – Proof (3)

Proof (continued).

(\Leftarrow): For all $u, v \in V$, there exists exactly one path from u to v . We must show that G is a tree, i.e., is connected and acyclic.

Because there exist paths from all u to all v , G is connected.

Proof by contradiction: assume that there exists a cycle in G , $\pi = \langle u, v_1, \dots, v_n, u \rangle$ with $n \geq 2$.

(Note that all cycles have length at least 3.)

From the definition of cycles, we have $v_1 \neq v_n$.

Then $\langle u, v_1 \rangle$ and $\langle u, v_n, \dots, v_1 \rangle$ are two different paths from u to v_1 , contradicting that there exists exactly one path from every vertex to every vertex. Hence G must be acyclic. □

Discrete Mathematics in Computer Science

Leaves and Edge Counts in Trees and Forests

Malte Helmert, Gabriele Röger

University of Basel

Leaves in Trees

Definition

Let $G = (V, E)$ be a tree.

A **leaf** of G is a vertex $v \in V$ with $\deg(v) = 1$.

Theorem

Let $G = (V, E)$ be a tree with $|V| \geq 2$.

Then G has at least two leaves.

Leaves in Trees – Proof

Proof.

Let $\pi = \langle v_0, \dots, v_n \rangle$ be path in G with maximal length among all paths in G .

Because $|V| \geq 2$, we have $n \geq 1$ (else G would not be connected).

We show that vertex v_n has degree 1: v_{n-1} is a neighbour in G .

Assume that it were not the only neighbour of v_n in G , so u is another neighbour of v_n . Then:

- If u is not on the path, then $\langle v_0, \dots, v_n, u \rangle$ is a longer path: contradiction.
- If u is on the path, then $u = v_i$ for some $i \neq n$ and $i \neq n - 1$. Then $\langle v_i, \dots, v_n, v_i \rangle$ is a cycle: contradiction.

By reversing π we can show $\deg(v_0) = 1$ in the same way. □

Edges in Trees

Theorem

*Let $G = (V, E)$ be a tree with $V \neq \emptyset$.
Then $|E| = |V| - 1$.*

Edges in Trees – Proof (1)

Proof.

Proof by induction over $n = |V|$.

Edges in Trees – Proof (1)

Proof.

Proof by induction over $n = |V|$.

Induction base ($n = 1$):

Then G has 1 vertex and 0 edges.

We get $|E| = 0 = 1 - 1 = |V| - 1$.

Edges in Trees – Proof (1)

Proof.

Proof by induction over $n = |V|$.

Induction base ($n = 1$):

Then G has 1 vertex and 0 edges.

We get $|E| = 0 = 1 - 1 = |V| - 1$.

Induction step ($n \rightarrow n + 1$):

Let $G = (V, E)$ be a tree with $n + 1$ vertices ($n \geq 1$).

From the previous result, G has a leaf u .

Let v be the only neighbour of u .

Let $e = \{u, v\}$ be the connecting edge.

...

Edges in Trees – Proof (2)

Proof (continued).

Consider the graph $G' = (V', E')$
with $V' = V \setminus \{u\}$ and $E' = E \setminus \{e\}$.

- G' is acyclic: every cycle in G' would also be present in G (contradiction).
- G' is connected: for all vertices $w \neq u$ and $w' \neq u$, G has a path π from w to w' because G is connected.
Path π cannot include u because u has only one neighbour, so traversing u requires repeating v . Hence π is also a path in G' .

Hence G' is a tree with n vertices, and we can apply the induction hypothesis, which gives $|E'| = |V'| - 1$.

It follows that

$$|E| = |E'| + 1 = (|V'| - 1) + 1 = (|V'| + 1) - 1 = |V| - 1.$$

□

Edges in Forests

Theorem

Let $G = (V, E)$ be a forest.

Let C be the set of connected components of G .

Then $|E| = |V| - |C|$.

This result generalizes the previous one.

Edges in Forests – Proof

Proof.

Let $C = \{C_1, \dots, C_k\}$.

For $1 \leq i \leq k$, let $G_i = (C_i, E_i)$ be G restricted to C_i , i.e., the graph whose vertices are C_i

and whose edges are the edges $e \in E$ with $e \subseteq C_i$.

We have $|V| = \sum_{i=1}^k |C_i|$ because the connected components form a partition of V .

We have $|E| = \sum_{i=1}^k |E_i|$ because every edge belongs to exactly one connected component. (Note that there cannot be edges between different connected components.)

Every graph G_i is a tree with at least one vertex: it is connected because its vertices form a connected component, and it is acyclic because G is. This implies $|E_i| = |C_i| - 1$.

Putting this together, we get

$$|E| = \sum_{i=1}^k |E_i| = \sum_{i=1}^k (|C_i| - 1) = \sum_{i=1}^k |C_i| - k = |V| - |C|. \quad \square$$

Discrete Mathematics in Computer Science

Characterizations of Trees

Malte Helmert, Gabriele Röger

University of Basel

Characterizations of Trees

Theorem

Let $G = (V, E)$ be a graph with $V \neq \emptyset$.

The following statements are equivalent:

- ① G is a tree.
- ② G is acyclic and connected.
- ③ G is acyclic and $|E| = |V| - 1$.
- ④ G is connected and $|E| = |V| - 1$.
- ⑤ For all $u, v \in V$ there exists exactly one path from u to v .

Characterizations of Trees – Proof (1)

Reminder:

- (1) G is a tree.
- (2) G is acyclic and connected.
- (3) G is acyclic and $|E| = |V| - 1$.
- (4) G is connected and $|E| = |V| - 1$.
- (5) For all $u, v \in V$ there exists exactly one path from u to v .

Proof.

We know already:

- (1) and (2) are equivalent by definition of trees.
- We have shown that (1) and (5) are equivalent.
- We have shown that (1) implies (3) and (4).

We complete the proof by showing (3) \Rightarrow (2) and (4) \Rightarrow (2). . .

Characterizations of Trees – Proof (2)

Reminder:

- (2) G is acyclic and connected.
- (3) G is acyclic and $|E| = |V| - 1$.

Proof (continued).

(3) \Rightarrow (2):

Because G is acyclic, it is a forest.

From the previous result, we have $|E| = |V| - |C|$,
where C are the connected components of G .

Characterizations of Trees – Proof (2)

Reminder:

- (2) G is acyclic and connected.
- (3) G is acyclic and $|E| = |V| - 1$.

Proof (continued).

(3) \Rightarrow (2):

Because G is acyclic, it is a forest.

From the previous result, we have $|E| = |V| - |C|$,
where C are the connected components of G .

But we also know $|E| = |V| - 1$. This implies $|C| = 1$.

Hence G is connected and therefore a tree.

...

Characterizations of Trees – Proof (3)

Reminder:

- (2) G is acyclic and connected.
- (4) G is connected and $|E| = |V| - 1$.

Proof (continued).

(4) \Rightarrow (2):

In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\langle v_0, \dots, v_n, v_0 \rangle$ ($n \geq 2$) is a cycle, remove the edge $\{v_0, v_1\}$ from the graph.

Every walk using this edge can substitute $\langle v_1, \dots, v_n, v_0 \rangle$ (or the reverse path) for it.

Characterizations of Trees – Proof (3)

Reminder:

- (2) G is acyclic and connected.
- (4) G is connected and $|E| = |V| - 1$.

Proof (continued).

(4) \Rightarrow (2):

In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\langle v_0, \dots, v_n, v_0 \rangle$ ($n \geq 2$) is a cycle, remove the edge $\{v_0, v_1\}$ from the graph.

Every walk using this edge can substitute $\langle v_1, \dots, v_n, v_0 \rangle$ (or the reverse path) for it.

Iteratively remove edges from G in this way while preserving connectedness until this is no longer possible. The resulting graph (V, E') is acyclic and connected and therefore a tree.

Characterizations of Trees – Proof (3)

Reminder:

- (2) G is acyclic and connected.
- (4) G is connected and $|E| = |V| - 1$.

Proof (continued).

(4) \Rightarrow (2):

In graphs that are not acyclic, we can remove an edge without changing the connected components: if $\langle v_0, \dots, v_n, v_0 \rangle$ ($n \geq 2$) is a cycle, remove the edge $\{v_0, v_1\}$ from the graph.

Every walk using this edge can substitute $\langle v_1, \dots, v_n, v_0 \rangle$ (or the reverse path) for it.

Iteratively remove edges from G in this way while preserving connectedness until this is no longer possible. The resulting graph (V, E') is acyclic and connected and therefore a tree.

This implies $|E'| = |V| - 1$, but we also have $|E| = |V| - 1$.

This yields $|E| = |E'|$ and hence $E' = E$: the number of edges removable in this way must be 0. Hence G is already acyclic. □