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C3. Acyclicity Acyclic (Di-) Graphs

C3.1 Acyclic (Di-) Graphs
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C3. Acyclicity Acyclic (Di-) Graphs

Acyclic

Similarly to connectedness, the presence or absence of cycles
is an important practical property for (di-) graphs.

Definition (acyclic, forest, DAG)

A graph or digraph G is called acyclic if there exists no cycle in G .

An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).

German: azyklisch/kreisfrei, Wald, DAG
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C3. Acyclicity Acyclic (Di-) Graphs

Acyclic (Di-) Graphs – Example
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C3. Acyclicity Acyclic (Di-) Graphs

Trees

Definition (tree)

A connected forest is called a tree.

German: Baum

I Tree is also a word for a recursive data structure,
which consists of either a leaf or a parent node
with one or more children, which are themselves trees.

I This other kind of tree is also called a rooted tree
to distinguish it from a tree as a graph.

I The two meanings of “tree” are distinct but closely related.
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C3. Acyclicity Acyclic (Di-) Graphs

Tree Graphs vs. Rooted Trees – Example (1)
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C3. Acyclicity Acyclic (Di-) Graphs

Tree Graphs vs. Rooted Trees – Example (2)

A B

C D

E
FG

tree graph

C

BA D E

F G

rooted tree with root C
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C3. Acyclicity Acyclic (Di-) Graphs

Tree Graphs vs. Rooted Trees – Example (3)
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Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science 9 / 28

C3. Acyclicity Acyclic (Di-) Graphs

From Tree Graphs to Rooted Trees

General procedure for converting tree graphs into rooted trees:

I Select any vertex v . Make v the root of the tree.

I Initially, v is the only pending vertex,
and there are no processed vertices.

I As long as there are pending vertices:
I Select any pending vertex u.
I Make all neighbours v of u that are not yet processed

children of u and mark them as pending.
I Change u from pending to processed.

We do not prove that this procedure always works. A proof of
correctness can be given based on the results we show next.
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C3. Acyclicity Unique Paths in Trees

C3.2 Unique Paths in Trees
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C3. Acyclicity Unique Paths in Trees

Unique Paths in Trees

Theorem

Let G = (V ,E ) be a graph.
Then G is a tree iff there exists exactly one path
from any vertex u ∈ V to any vertex v ∈ V .
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C3. Acyclicity Unique Paths in Trees

Unique Paths In Trees – Proof (1)

Proof.

(⇒): G is a tree. Let u, v ∈ V .
We must show that there exists exactly one path from u to v .

We know that at least one path exists because G is connected.

It remains to show that there cannot be two paths from u to v .
If u = v , there is only one path (the empty one).
(Any longer path would have to repeat a vertex.)

We assume that there exist two different paths from u to v
(u 6= v) and derive a contradiction. . . .
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C3. Acyclicity Unique Paths in Trees

Unique Paths In Trees – Proof (2)

Proof (continued).

Let π = 〈v0, v1, . . . , vn〉 and π′ = 〈v ′0, v ′1, . . . , v ′m〉 be the two paths
(with v0 = v ′0 = u and vn = v ′m = v).
Let i be the smallest index with vi 6= v ′i , which must exist because
the two paths are different, and neither can be a prefix of the other
(else v would be repeated in the longer path).
We have i ≥ 1 because v0 = v ′0.
Let j ≥ i be the smallest index such that vj = v ′k for some k ≥ i .
Such an index must exist because vn = v ′m.
Then 〈vi−1, . . . , vj−1, v ′k , . . . , v ′i−1〉 is a cycle,
which contradicts the requirement that G is a tree. . . .
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C3. Acyclicity Unique Paths in Trees

Unique Paths In Trees – Proof (3)

Proof (continued).

(⇐): For all u, v ∈ V , there exists exactly one path from u to v .
We must show that G is a tree, i.e., is connected and acyclic.

Because there exist paths from all u to all v , G is connected.

Proof by contradiction: assume that there exists a cycle in G ,
π = 〈u, v1, . . . , vn, u〉 with n ≥ 2.
(Note that all cycles have length at least 3.)
From the definition of cycles, we have v1 6= vn.

Then 〈u, v1〉 and 〈u, vn, . . . , v1〉 are two different paths
from u to v1, contradicting that there exists exactly one path
from every vertex to every vertex. Hence G must be acyclic.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

C3.3 Leaves and Edge Counts in
Trees and Forests
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Leaves in Trees

Definition

Let G = (V ,E ) be a tree.
A leaf of G is a vertex v ∈ V with deg(v) = 1.

Theorem

Let G = (V ,E ) be a tree with |V | ≥ 2.
Then G has at least two leaves.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Leaves in Trees – Proof

Proof.

Let π = 〈v0, . . . , vn〉 be path in G with maximal length
among all paths in G .
Because |V | ≥ 2, we have n ≥ 1 (else G would not be connected).

We show that vertex vn has degree 1: vn−1 is a neighbour in G .
Assume that it were not the only neighbour of vn in G ,
so u is another neighbour of vn. Then:

I If u is not on the path, then 〈v0, . . . , vn, u〉
is a longer path: contradiction.

I If u is on the path, then u = vi for some i 6= n and i 6= n − 1.
Then 〈vi , . . . , vn, vi 〉 is a cycle: contradiction.

By reversing π we can show deg(v0) = 1 in the same way.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Trees

Theorem

Let G = (V ,E ) be a tree with V 6= ∅.
Then |E | = |V | − 1.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Trees – Proof (1)

Proof.

Proof by induction over n = |V |.

Induction base (n = 1):
Then G has 1 vertex and 0 edges.
We get |E | = 0 = 1− 1 = |V | − 1.

Induction step (n→ n + 1):
Let G = (V ,E ) be a tree with n + 1 vertices (n ≥ 1).
From the previous result, G has a leaf u.
Let v be the only neighbour of u.
Let e = {u, v} be the connecting edge. . . .

Malte Helmert, Gabriele Röger (University of Basel)Discrete Mathematics in Computer Science 20 / 28



C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Trees – Proof (2)

Proof (continued).

Consider the graph G ′ = (V ′,E ′)
with V ′ = V \ {u} and E ′ = E \ {e}.
I G ′ is acyclic: every cycle in G ′ would also be present in G

(contradiction).

I G ′ is connected: for all vertices w 6= u and w ′ 6= u,
G has a path π from w to w ′ because G is connected.
Path π cannot include u because u has only one neighbour, so
traversing u requires repeating v . Hence π is also a path in G ′.

Hence G ′ is a tree with n vertices, and we can apply
the induction hypothesis, which gives |E ′| = |V ′| − 1.
It follows that
|E | = |E ′|+ 1 = (|V ′| − 1) + 1 = (|V ′|+ 1)− 1 = |V | − 1.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Forests

Theorem

Let G = (V ,E ) be a forest.
Let C be the set of connected components of G.
Then |E | = |V | − |C |.

This result generalizes the previous one.
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C3. Acyclicity Leaves and Edge Counts in Trees and Forests

Edges in Forests – Proof

Proof.

Let C = {C1, . . . ,Ck}.
For 1 ≤ i ≤ k , let Gi = (Ci ,Ei ) be G restricted to Ci , i.e.,
the graph whose vertices are Ci

and whose edges are the edges e ∈ E with e ⊆ Ci .

We have |V | =
∑k

i=1 |Ci | because the connected components
form a partition of V .

We have |E | =
∑k

i=1 |Ei | because every edge belongs to exactly
one connected component. (Note that there cannot be edges
between different connected components.)

Every graph Gi is a tree with at least one vertex:
it is connected because its vertices form a connected component,
and it is acyclic because G is. This implies |Ei | = |Ci | − 1.

Putting this together, we get
|E | =

∑k
i=1 |Ei | =

∑k
i=1(|Ci |−1) =

∑k
i=1 |Ci |−k = |V |−|C |.
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C3. Acyclicity Characterizations of Trees

C3.4 Characterizations of Trees
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C3. Acyclicity Characterizations of Trees

Characterizations of Trees

Theorem

Let G = (V ,E ) be a graph with V 6= ∅.
The following statements are equivalent:

1 G is a tree.

2 G is acyclic and connected.

3 G is acyclic and |E | = |V | − 1.

4 G is connected and |E | = |V | − 1.

5 For all u, v ∈ V there exists exactly one path from u to v.
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C3. Acyclicity Characterizations of Trees

Characterizations of Trees – Proof (1)

Reminder:
(1) G is a tree.
(2) G is acyclic and connected.
(3) G is acyclic and |E | = |V | − 1.
(4) G is connected and |E | = |V | − 1.

(5) For all u, v ∈ V there exists exactly one path from u to v .

Proof.
We know already:

I (1) and (2) are equivalent by definition of trees.

I We have shown that (1) and (5) are equivalent.

I We have shown that (1) implies (3) and (4).

We complete the proof by showing (3)⇒ (2) and (4)⇒ (2). . . .
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C3. Acyclicity Characterizations of Trees

Characterizations of Trees – Proof (2)

Reminder:
(2) G is acyclic and connected.

(3) G is acyclic and |E | = |V | − 1.

Proof (continued).

(3)⇒ (2):
Because G is acyclic, it is a forest.
From the previous result, we have |E | = |V | − |C |,
where C are the connected components of G .

But we also know |E | = |V | − 1. This implies |C | = 1.
Hence G is connected and therefore a tree. . . .
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C3. Acyclicity Characterizations of Trees

Characterizations of Trees – Proof (3)

Reminder:
(2) G is acyclic and connected.

(4) G is connected and |E | = |V | − 1.

Proof (continued).

(4)⇒ (2):
In graphs that are not acyclic, we can remove an edge without
changing the connected components: if 〈v0, . . . , vn, v0〉 (n ≥ 2)
is a cycle, remove the edge {v0, v1} from the graph.
Every walk using this edge can substitute 〈v1, . . . , vn, v0〉
(or the reverse path) for it.

Iteratively remove edges from G in this way while preserving
connectedness until this is no longer possible. The resulting graph
(V ,E ′) is acyclic and connected and therefore a tree.

This implies |E ′| = |V | − 1, but we also have |E | = |V | − 1.
This yields |E | = |E ′| and hence E ′ = E : the number of edges
removable in this way must be 0. Hence G is already acyclic.
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