

Discrete Mathematics in Computer Science

B7. Operations on Relations

Malte Helmert, Gabriele Röger

University of Basel

Discrete Mathematics in Computer Science

— B7. Operations on Relations

B7.1 Operations on Relations

B7.1 Operations on Relations

Relations: Recap

- ▶ A **relation** over sets S_1, \dots, S_n is a set $R \subseteq S_1 \times \dots \times S_n$.
- ▶ A **binary** relation is a relation over two sets.
- ▶ A **homogeneous** relation R over set S is a binary relation $R \subseteq S \times S$.

Set Operations

- ▶ Relations are sets of tuples, so we can build their union, intersection, complement, ...
- ▶ Let R be a relation over S_1, \dots, S_n and R' a relation over S'_1, \dots, S'_n . Then $R \cup R'$ is a relation over $S_1 \cup S'_1, \dots, S_n \cup S'_n$.
With the standard relations $<, =$ and \leq for \mathbb{N}_0 , relation \leq corresponds to the union of relations $<$ and $=$.
- ▶ Let R and R' be relations over n sets.
Then $R \cap R'$ is a relation.
Over which sets?
With the standard relations $\leq, =$ and \geq for \mathbb{N}_0 , relation $=$ corresponds to the intersection of \leq and \geq .
- ▶ If R is a relation over S_1, \dots, S_n then so is the **complementary relation** $\bar{R} = (S_1 \times \dots \times S_n) \setminus R$.
With the standard relations for \mathbb{N}_0 , relation $=$ is the complementary relation of \neq and $>$ the one of \leq .

Composition of Relations

Definition (Composition of relations)

Let R_1 be a relation over A and B and R_2 be a relation over B and C .

The **composition of R_1 and R_2** is the relation $R_2 \circ R_1$ with:

$$R_2 \circ R_1 = \{(a, c) \mid \text{there is a } b \in B \text{ with } (a, b) \in R_1 \text{ and } (b, c) \in R_2\}$$

How can we illustrate this graphically?

Inverse of a Relation

Definition

Let $R \subseteq A \times B$ be a binary relation over A and B .

The **inverse relation** of R is the relation $R^{-1} \subseteq B \times A$ given by
 $R^{-1} = \{(b, a) \mid (a, b) \in R\}$.

- ▶ The inverse of the $<$ relation over \mathbb{N}_0 is the $>$ relation.
- ▶ Relation R with xRy iff person x has a key for y .
Inverse: Q with aQb iff lock a can be opened by person b .

Composition is Associative

Theorem (Associativity of composition)

Let S_1, \dots, S_4 be sets and R_1, R_2, R_3 relations with $R_i \subseteq S_i \times S_{i+1}$.
Then

$$R_3 \circ (R_2 \circ R_1) = (R_3 \circ R_2) \circ R_1.$$

Proof.

It holds that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there is an x_3 with $(x_1, x_3) \in R_2 \circ R_1$ and $(x_3, x_4) \in R_3$.

As $(x_1, x_3) \in R_2 \circ R_1$ iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_3) \in R_2$, we have overall that $(x_1, x_4) \in R_3 \circ (R_2 \circ R_1)$ iff there are x_2, x_3 with $(x_1, x_2) \in R_1$, $(x_2, x_3) \in R_2$ and $(x_3, x_4) \in R_3$.

This is the case iff there is an x_2 with $(x_1, x_2) \in R_1$ and $(x_2, x_4) \in R_3 \circ R_2$, which holds iff $(x_1, x_4) \in (R_3 \circ R_2) \circ R_1$. □

Transitive Closure

Definition (Transitive closure)

The transitive closure R^+ of a relation R over set S is the smallest relation over S that is transitive and has R as a subset.

The transitive closure always exists. [Why?](#)

Example: If aRb specifies that block a lies on block b , what does R^+ express?

Transitive Closure II

Define the i -th power of a homogeneous relation R as

$$R^1 = R \quad \text{if } i = 1 \text{ and}$$

$$R^i = R \circ R^{i-1} \quad \text{for } i > 1$$

Theorem

Let R be a relation over set S . Then $R^+ = \bigcup_{i=1}^{\infty} R^i$.

Without proof.

Other Operators

- ▶ There are many more operators, also for general relations.
- ▶ Highly relevant for [queries over relational databases](#).
- ▶ For example, [join](#) operators combine relations based on common entries.
- ▶ Example for a [natural join](#):

Employee			Dept		Employee \bowtie Dept			
Name	Empld	DeptName	DeptName	Manager	Name	Empld	DeptName	Manager
Harry	3415	Finance	Finance	George	Harry	3415	Finance	George
Sally	2241	Sales	Sales	Harriet	Sally	2241	Sales	Harriet
George	3401	Finance	Production	Charles	George	3401	Finance	George
Harriet	2202	Sales			Harriet	2202	Sales	Harriet
Mary	1257	Human Resources						

(Source: Wikipedia)

Summary

- ▶ Relations: general, [binary](#), [homogeneous](#)
- ▶ Properties: [reflexivity](#), [symmetry](#), [transitivity](#) (and related properties)
- ▶ Special relations: [equivalence relations](#), [order relations](#)
- ▶ Operations: [inverse](#), [composition](#), [transitive closure](#)