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Exercise 9.1 (2 marks)

In the Towers of Hanoi puzzle we have three pegs A, B and C, and n discs {1, . . . , n}, where the
name of the disc denotes its size. In the beginning all discs are placed on A in decreasing size,
with the biggest disc at the bottom. We can move a disc i from peg X to peg Y if it is on the top
of X and peg Y either has no discs or its top disc is bigger than i. The goal is to move all discs
to peg C.
If we call the following algorithm with X = A, Y = B and Z = C, it solves the problem recursively
by first moving discs {1, . . . , n − 1} from X to Y (using Z to temporarily store discs), moving n
from X to Z and finally moving discs {1, . . . , n − 1} from Y to Z (using X to temporarily store
discs):

procedure TowersOfHanoi(n, X, Y, Z )
if n = 1 then

move disc n from X to Z
else if n > 1 then

TowersOfHanoi(n− 1, X, Z, Y ) . move discs {1, . . . , n− 1} from X to Y
move disc n from X to Z
TowersOfHanoi(n− 1, Y, X, Z ) . move discs {1, . . . , n− 1} from Y to Z

end if
end procedure

The number of moves needed by the algorithm to solve a Towers of Hanoi puzzle with n discs can
be described by the following recursive function:

moves(0) = 0

moves(n) = 2 ·moves(n− 1) + 1

Specify moves(n) in closed form and prove your answer.



Exercise 9.2 (3 marks)

(a) Consider a naive recursive implementation of F (n) that computes the Fibonacci numbers by
returning 0 for n = 0, returning 1 for n = 1, and returning F (n− 1) + F (n− 2) otherwise.
How many times is function F called when computing F (n) for n > 1? You do not need to
justify your answer.

(b) Memoization is an optimization technique for recursive functions where the intermediate
results are stored in a table to avoid recomputing them again:

procedure RecursiveFunction(x, table)
if base case then

return base value
else if table contains entry for x then

return table[x]
else

table[x] ← recursive call(s) to RecursiveFunction
return table[x]

end if
end procedure

How does your answer to (a) change, if F (n) uses memoization? You do not need to justify
your answer.

(c) Assume each call to F takes one nanosecond excluding the time needed for recursive calls.
Specify for n = 10, n = 40 and n = 50 how much time is spent in total to compute F (n)
without and with memoization.

Hint: To answer (a) and (b) we recommend to implement the function in your favourite program-
ming language with a function call counter. This way you can get some data points on how many
function calls are needed for a specific n. From this you can then find a general pattern.
An implementation is however not mandatory and should not be handed in (it will not be graded).

Exercise 9.3 (3 marks)

We consider a Fibonacci-like sequence that is defined as follows:

F ′(0) = 4

F ′(1) = 2

F ′(n) = F ′(n− 1) + F ′(n− 2) for n ≥ 2

The goal of this exercise is to derive a closed form expression of F ′ using the strategy on slide
9 (handout version) of Chapter D2. Since one error can have a significant impact we split the
exercise into three parts and for the latter two provide the solution to the previous task. In order
to get marks for a subtask you thus need to provide the full calculation process.

(a) Derive an equation for the generating function g and simplify it as much as possible (in
particular, the simplified equation should no longer contain an infinite sum).

As in the lecture, you can assume without proof that the power series of the F ′-numbers
converges for |x| < ε for sufficiently small values of ε > 0.

(b) Solve the equation g(x) = x2g(x) + xg(x)− 2x + 4 for g(x) .

(c) Derive the power series representation for g(x) = 4−2x
1−x−x2 by using partial fractial decomposi-

tion and from this specify the closed form of L.

Hint: Unlike for the Fibonacci series, you can use the partial fractial decomposition directly
on g(x).



Exercise 9.4 (2 marks)

The following recursive algorithm computes the largest element of a given array when using the
index of the first array element as parameter left and using the index of the last array element as
parameter right.

procedure Max(array, left, right)
if left = right then

return array [left ]
else

middle← b(left + right)/2c
max1← Max(array, left, middle)
max2← Max(array, middle + 1, right)
if max1 > max2 then

return max1
else

return max2
end if

end if
end procedure

Compute the asymptotic runtime of Max with the Master theorem (slide 27 handout version,
Chapter D2).
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