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The proofs on this exercise sheet are not hard, but you have to be careful about what properties you
actually need to prove. We advise you to carefully re-read the definitions from the lecture before
writing your proof.

Exercise 4.1 (1 mark)

Consider the partition
P = {{1, 4}, {2}, {3, 5, 6}}

over S = {1, 2, 3, 4, 5, 6}. Specify the equivalence relation RP induced by P .

Exercise 4.2 (2 marks)

Prove the following statement:
Let P be a partition of set S. Then every x ∈ S is an element of exactly one X ∈ P .

Exercise 4.3 (2 marks)

Specify a relation over N0 with the required properties or explain why such a relation cannot
exist.

(a) A partial order where each element is both minimal and maximal.

(b) A strict order with a least element but no minimal element.

Exercise 4.4 (2 marks)

Let R be a total order over a finite set S and let S′ = S ∪ {a} for some a 6∈ S.
Prove that

R′ = R ∪Ra with Ra = {(a, i) | i ∈ S′}

is a total order over S′.
Hint: You need to prove four properties.

Exercise 4.5 (3 marks)

Consider the following relations over N0:

R1 = {(x, 2x) | x ∈ N0}
R2 = {(x, y) | x ∈ N0, y ∈ N0, x + y is odd}

Describe each of the relations described below as a set using set-builder notation.

(a) R2 ◦R1

(b) R+
1

(c) R1 ∩R2
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