
Turing project: ALGOL 60 Tutorial

Viktor Gsteiger
University of Basel

Matriculation Number: 18-054-700

December 16, 2020
Seminar: 58826-01 - Turing Award Winners and Their Contributions

Abstract

The difficulty of learning a new programming language is inherently great.
One may have no previous experience altogether, one may have some experience
but with another language or one may have some knowledge about the language
at hand but may have forgotten large parts of the learned things again. The diffi-
culty of learning a programming language that is not used any more and never had
great commercial success is even greater, however, in the case of ALGOL 60, I am
convinced, that the effort is not without benefits. ALGOL 60 is one of the grand-
parents of most modern programming languages and thus a direct predecessor of
the tools we use every day. It is thus important to study the roots of our tools, to
learn from past experiences, and to correct past mistakes.

1

Contents
1 Introduction 4

2 Background 4

3 ALGOL 60 Environment Setup 4
3.1 Text Editor . 4
3.2 The C Compiler . 4
3.3 C Compiler Installation . 5

3.3.1 Installation on UNIX . 5
3.3.2 Installation on Mac OS . 5

3.4 ALGOL 60 Translator Installation 5

4 ALGOL 60 Program Structure 6
4.1 ALGOL 60 Hello World Example 6
4.2 Compile and Execute an ALGOL 60 Program 7

5 ALGOL 60 Basic Syntax 8
5.1 Formal Notation . 8
5.2 Symbols . 8

5.2.1 Letters . 8
5.2.2 Digits . 8
5.2.3 Logical values . 8
5.2.4 Delimiters . 9

5.3 Identifiers . 9
5.4 Numbers . 9
5.5 Strings . 10
5.6 Indentation . 10

6 ALGOL 60 Data Types 11
6.1 Integer Types . 11
6.2 Real Types . 11
6.3 Boolean Types . 12

7 ALGOL 60 Expressions 13
7.1 Variables . 13
7.2 Function designators . 13
7.3 Arithmetic expressions . 13

7.3.1 Arithmetic expression types 14
7.4 Boolean expressions . 14
7.5 Designational expression . 15

2

8 ALGOL 60 Statements 16
8.1 Compound statements and blocks 16
8.2 Assignment Statement . 17
8.3 Go To Statement . 17
8.4 Conditional Statement . 18
8.5 For Statement . 18
8.6 Procedure Statement . 19

9 ALGOL 60 Declarations 20
9.1 Type Declaration . 20
9.2 Array Declaration . 20
9.3 Switch Declaration . 21
9.4 Procedure Declaration . 21

10 Procedures 23

11 ALGOL 60 Scope Rules 26

12 Recursion 28

13 Simple Programs 30
13.1 Coin flip . 30
13.2 Greatest number . 31
13.3 Fisher–Yates shuffle . 33

14 Conclusion 34

3

1 Introduction
This tutorial aims to give the reader an introduction to the ALGOL 60 programming
language. The reader should be able to program small to mid-size procedures and
small size working programs after reading this tutorial and should be able to translate
and execute the ALGOL 60 program with the help of the MARST translator. This
tutorial does not aim to be complete and due to the inherent difficulty of learning a
programming language, it does not aim to lead to success. This tutorial is based upon
the description of ALGOL 60 in the original ALGOL 60 report written by Backus et al.
(1960).

2 Background
ALGOL 60 was the direct successor of the International Algebraic Language (IAL
or later called ALGOL 58) and was a joint effort of European as well as American
computer scientists in the years 1958 to 1960. With the help of the ALGOL Bulletin, a
publication edited by Peter Naur, and several conferences the ALGOL 60 report could
be published in 1960. ALGOL 60 did not have great commercial success on its own,
however, the concepts introduced by the language can be witnessed in programming
languages until nowadays.

The GNU MARST translator translates programs written in ALGOL 60 into the
ANSI C 89 programming language. It is part of the GNU project and is currently
maintained by Andrew Makhorin and the last release dates back to 2013.

3 ALGOL 60 Environment Setup
Before we can start programming in ALGOL 6, we will need to install some prerequi-
sites to edit, translate, and execute ALGOL 60 programs.

3.1 Text Editor
To edit any kind of text document, one will need a text editor. Examples include Win-
dows Notepad, vim, EMACS, Atom, or similar text editors.

The files created with the text editor are source files with ALGOL 60 programs
usually having the extension ".alg".

3.2 The C Compiler
The C Compiler translates the human-readable source code into executable machine
language. In the case of writing ALGOL 60 programs, the C Compiler is not directly
accessed by the user but rather compiles the translated ALGOL 60 program into ma-
chine code.

The C Compiler usually used is the GNU C/C++ compiler. In the following sub-
section, I will discuss how to install the C compiler on the UNIX based Operating

4

Systems. It is sadly not possible for me to install it on Microsoft Windows and thus I
will focus on the UNIX-based operating systems.

3.3 C Compiler Installation
3.3.1 Installation on UNIX

The GNU C/C++ compiler is mostly already installed on UNIX systems. To check
whether the compiler is already installed type the following into the command line:

1 $ gcc -v

If the GNU compiler is already installed then something like the following will be
printed out to the command line:

1 Using built-in specs.
2 Target: i386-redhat-linux
3 Configured with: ../configure --prefix=/usr
4 Thread model: posix
5 gcc version 4.1.2 20080704 (Red Hat 4.1.2-46)

If the GNU compiler is not installed on your UNIX system you will need to install
it from an official GNU distribution. See the documentation on the download page for
reference.

3.3.2 Installation on Mac OS

The easiest way to install the GNU compiler on a Mac OS X is to install the Xcode
development environment provided by Apple. See the documentation on the download
page for reference.

This tutorial has been written based on Mac OS and the examples have been trans-
lated, compiled, and executed on Mac OS Catalina.

3.4 ALGOL 60 Translator Installation
The MARST ALGOL 60 translator can be downloaded from any gnu mirror under
/gnu/marst/. We will be using version 2.7 or MARST released in 2013. Download
the tar directory and uncompress it.

To install MARST on your OS type the following into the command line at the
location of the marst-2.7 directory:

1 $./configure; make; make install

This should configure, build, and install the MARST package. For more informa-
tion see the README or the INSTALL file.

5

http://gcc.gnu.org/install/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://www.gnu.org/prep/ftp.html

4 ALGOL 60 Program Structure
Before we introduce the building blocks involved in developing an ALGOL 60 program
we will introduce an example ALGOL 60 program and its structure so that we may use
it again for reference in the following sections.

4.1 ALGOL 60 Hello World Example
An ALGOL 60 program can be constructed with the following parts:

• Procedures

• Variables

• Statements

• Comments

A simple example to display various parts of an ALGOL 60 program would be the
following:

1 begin
2 comment A first ALGOL 60 program;
3 procedure main;
4 begin
5 outstring(1, "Hello, world!\n")
6 end;
7 main
8 end

Listing 1: hello.alg program

The parts of the above program are the following:

1. The first line declares the block scope of our program.

2. The second line declares the procedure which we called the main procedure. The
identifier of the procedure may be changed.

3. The next line is a comment which will be ignored by the translator and is used
to comment on the code at hand to make it easier for fellow programmers to
understand the intention of the program.

4. The begin keyword signifies that a block of the procedure starts here.

5. Following comes an output keyword outstring which displays the string
given to the first output channel.

6. The seventh line calls the main procedure.

6

4.2 Compile and Execute an ALGOL 60 Program
We will now save the hello.alg program, translate it, compile it, and run it. The steps
to do this are the following:

1. Open your text editor and type in the above program.

2. Save the file as hello.alg.

3. Open a command line and navigate to the directory where the above program has
been saved.

4. Type marst hello.alg -o hello.c.

5. If there are no errors the translator creates the C file hello.c.

6. Compile and link the file with the following command gcc hello.c -lalgol
-lm -o hello.

7. Run your executable ./hello.

8. If everything worked fine you should see "Hello, world!" printed on the
command line.

Note: The MARST translator and the c compiler are rather verbose when it comes
to warnings. However, all programs specified in this tutorial have been tested and work
according to their specification.

7

5 ALGOL 60 Basic Syntax

5.1 Formal Notation
The notation used in this part of the tutorial is the Backus Naur form also used in the
original AGLOL 60 report. The notation is best explained with an example:

< ab >::=(| < ab > (|example|) (1)

Where the sequence of characters enclosed in brackets represents meta-linguistic
variables which are represented by a sequence of symbols. The ::= and | signify meta-
linguistic connectives. | has the meaning or. Any symbol in a formula that is neither
a variable nor a connective denotes itself. Variables can be replaced with their own
definition. So the example signifies a recursive rule for the formation of values of the
variable <ab>. Some values for <ab> are:

example(or)((

5.2 Symbols
The basic symbols of the ALGOL 60 programming language consist of letters, digits,
logical values, and delimiters. With the basic symbols of ALGOL 60, every ALGOL
60 program can be created. The basic symbols themselves have no semantic values
and are combined together to create every program. The basic symbols are made up as
follows:

5.2.1 Letters

< digit >::=a|b|c|d|e|f |g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
A|B|C|D|E|F |G|H|I|J |K|L|M |N |O|P |Q|R|S|T |U |V |W |X|Y |Z

(2)

Which are used for forming identifiers and strings.

5.2.2 Digits

< digit >::=0|1|2|3|4|5|6|7|8|9 (3)

Which are used for forming numbers, identifiers and strings.

5.2.3 Logical values

< logical values >::=true|false (4)

Which have a set meaning as Boolean logical values.

8

5.2.4 Delimiters

< delimiter >::= < operator > | < separator > | < bracket > | < declarator > |
< specificator >

< operator >::= < arithmetic operator > | < relational operator > |
< logical operator > | < sequential operator >

< arithmetic operator >::= + | − | ∗ |/|%|ˆ∗ ∗
< relational operator >::= < | <= | = | >= | > |! =

< logical operator >::= == |− > (meaning ⊃)||(meaning or)|&|!
< sequential operator >::=go to|if|then|else|for|do

< separator >::=, |.|#| : |; | := |step|until|while|comment
< bracket >::=(|)|[|]|"|begin|end

< declarator >::=own|Boolean|integer|real|array|switch|procedure
< specificator >::=string|label|value

(5)

All delimiters have a fixed meaning for which is most obvious, or else the meaning will
be explained at the appropriate section.
Typographical features such as blank spaces can be inserted between symbols, how-
ever, multi-character symbols should contain no blank space.
The separator comment has special importance and has the purpose of writing symbols
into the code that will not be translated into machine-executable code. The commenting
symbols are all symbols between the separator comment and the separator ;.

5.3 Identifiers
In ALGOL 60 an identifier has no inherent meaning but serves the identification of
variables, arrays, labels, switches, and procedures. An identifier starts with a letter and
is followed by zero or more letters or digits. Every combination is allowed except the
previously defined delimiters.

Some examples for identifiers are as follows:

1 Soup
2 V17a
3 MARILYN

5.4 Numbers
Numbers are used for arithmetic operations. There are two types of numbers in the AL-
GOL 60 programming language. Both have the same functionalities, however different
ranges of size. The types of numbers are integer and real. Integers are any positive
or negative combination of digits. Reals are any integer including a decimal fraction

9

(denoted by the separator .) and/or an exponent part (denoted by the separator #). More
on this in section ALGOL 60 Data Types.

Some examples for numbers are as follows:

1 0
2 .5384
3 -.083#-02

5.5 Strings
A string is any sequence of basic symbols not containing ". Strings are used as actual
parameters of the procedure, for example also the procedure outstring which has
been included in the translation program for output functionalities. Due to the transla-
tion to a C program, the strings may be coded as usual in C fashion. Escape sequences
like \n are allowed. To use a double quote in a string use a backslash \".

Some examples for strings are as follows:

1 "This is a string"
2 "This is another \"string\""

5.6 Indentation
ALGOL 60 does not require any indentation, however, to make the code more easily
readable we will be using an easy sort of indentation where the code within a begin
and end will be indented by four spaces. Furthermore, if there is a label, the indenta-
tion will be also four spaces in the to the label belonging code.

10

6 ALGOL 60 Data Types
As the original ALGOL 60 document was written without a specific hardware imple-
mentation in mind the ALGOL 60 data types used in this tutorial will reflect the C
language data types in sizes. Data types define how much space will be occupied in
storage.

6.1 Integer Types
As mentioned in subsection Numbers integers refer to any positive or negative concate-
nation of numbers without any exponent or decimal fractions. The values possible are
between -32’768 to 32’768 if int is stored in 2 bytes or between -2,147,483,648
to 2,147,483,647 if int is stored in 4 bytes.

To get the exact possible size of the integer write a short program as follows:

1 inline("printf(\"%lu\", sizeof(int));")

The inline procedure is a pseudo procedure implemented by the MARST develop-
ers to signify what code will be translated into C code.

Examples for integers in ALGOL 60 are as follows:

1 123
2 0
3 -6577

6.2 Real Types
Again, as mentioned in subsection Numbers reals refer to any positive concatenation of
digits which may include exponents and/or decimal fractions. The values possible are
between 1.2E-38 to 3.4E+38 with a precision to 6 decimal places if float is stored
in 4 bytes.

Examples for reals in ALGOL 60 are as follows:

1 .87
2 -.03#-04
3 -56.46

11

6.3 Boolean Types
Boolean types are the simplest types possible and adhere to the formal logic. The pos-
sible values for Boolean types are true or false.

Examples for Boolean types in ALGOL 60 are as follows:

1 true
2 false

12

7 ALGOL 60 Expressions
The main constituents of any ALGOL 60 programs describing algorithmic processes
are arithmetic, Boolean, and designation expressions. These expressions contain logi-
cal values, numbers, variables, function designators, and operators.

7.1 Variables
A variable represents a single value. This value can be used in expressions and can
be used to form other values and may be changed by means of assignment statements.
Array expressions with their identifiers are also considered variables. The identifiers
of arrays are enclosed in subscript brackets []. The type of a variable is defined in the
declaration of the variable itself (see Type Declaration for more information on types)
or for the array identifier (see Array Declaration for more information on arrays).

Examples for variables are as follows:

1 beta
2 Q[7, 2]
3 a17

7.2 Function designators
A function designator represents a single value that can be attained by the application
of a given set of rules defined by a procedure declaration (see Procedure Declaration
for more information on procedures) to a defined set of parameters which can either be
single values or variables. It is important to note that if the function is called without
any parameter that the brackets should not be added.

Examples for function designators are as follows:

1 Compile("Test")Stack:(P)
2 J(1 + s, n)
3 Rhesus

7.3 Arithmetic expressions
Arithmetic expressions, as the name says, are rules for computing numerical values.
Simple arithmetic expressions are the application of the arithmetic operations of the
rule upon the actual numerical values of the primaries involved in the expression. The
numerical values of primaries are either simply the values given in the case of numbers
or in the case of variables the currently assigned values of the variables (see Assign-
ment Statement for more information on assignments). For functional designators, it is

13

the value received by executing the corresponding procedure.
The possible arithmetic operators are +, -, *, /, % and **. For more information on the
semantics of those operators see Boolean expressions.
The normal arithmetic rules apply. Thus also the precedence from left to right with
the exponent operator having the highest precedence, the multiplication or division op-
erators the second-highest, and the addition or subtraction operator the third-highest
precedence. Expressions within parentheses are evaluated on their own and further cal-
culated in the subsequent calculations.

Examples for simple arithmetic expressions are as follows:

1 w * u - Q(S + C) ** 2
2 a * sin(omega * t)

There is also the possibility of more complex arithmetic expressions that involve
Boolean expressions. In this case, the value of the arithmetic expression is calculated
from the Boolean expressions that are true.

Examples for complex arithmetic expressions are as follows:

1 if q > 0 then U := U + V else if a * b > 17 then U := U /
V else U := 0

2 if s then n := n - 1 else n := n + 1

7.3.1 Arithmetic expression types

The types of arithmetic expressions must be an integer or real (see ALGOL 60 Data
Types for more information on types).
The operators +, -, and * have the conventional meaning and will return integer if all
operands are integer, else real.
The operation <term> / <factor> and <term> % <factor> both denote division while /
is defined for all four combinations of integer and real and will give a result of type real
while % is only defined for two operands of type integer and will return an integer. / is
defined as the multiplication of the term with the reciprocal of the factor. % is defined
as the multiplication of the sign of the / division of the two operands with the largest
absolute integer that is smaller than the / division of the two operands.
The operation <factor> ** <primary> means exponential, where the factor is the base
and the primary the exponent.

7.4 Boolean expressions
Boolean expressions are rules for calculating logical values where the principles of
evaluations are analogous to the principles of arithmetic evaluations. The possible
boolean operators are !, &, |, -> or ==.

14

b1 false false true true
b2 false true false true
!b1 true true false false
b1&b2 false false false true
b1|b2 false true true true
b1->b2 true true false true
b1==b2 true false false true

The relational operators <, <=, =, >, >=, and != are applied on two arithmetic ex-
pressions.
The precedence of the operators are first the precedence, then the relational operators,
next to the !, following the &, and then the |, with -> following and == coming last.
The semantics of the operators are defined as follows:

Examples for boolean expressions are as follows:

1 x = -2
2 a + c > -5 & z - 6 < o
3 if k < 5 then s > w else h == c

7.5 Designational expression
Designation expressions are rules to determine the labels of an ALGOL 60 Statements.
Here the evaluation happens analogously to the Arithmetic expressions. Boolean ex-
pressions can be used to introduce some conditional logic into the designation of the
labels. A switch designator refers to the corresponding switch declaration and by the
value given to the switch declaration the switch selects the designation expression listed
in the switch declaration. More on Switch Declaration later.

Examples for designation expressions are as follows:

1 p9
2 Select[k-2]
3 if b < c then p9 else s[if w <= 0 then 5 else n]

15

8 ALGOL 60 Statements
Statements in ALGOL are the units of operation of every program. Statements will be
executed in order as written, however, there are additional control mechanisms as go
to statements which allow to let the control flow be directed in a more granular fash-
ion. Statements are separated by the delimiter ;. Labels on statements allow for this
dynamic control flow.
Conditional statements may also allow selecting certain statements to be executed and
others to be skipped.

8.1 Compound statements and blocks
Basic statements do not require the keywords to begin or end and are the basic building
blocks for the following compound statements and blocks. Basic statements may either
be assignment statements, go to statements, conditional statements, or for statements.
Basic statements may also include labels.

Compound statements and block statements are of the form as follows with S de-
noting statements which may be again complete compound statements or blocks, L
denoting labels, and D denoting declarations:

Compound statements:

1 L: L: ... begin S; S; ... S; S end;

Blocks:

1 L: L: ... begin D; D; ... D; S; S; ... S; S end;

Examples for basic statements are as follows:

1 tmp := 3;
2 Rome: x := x + 1;
3 for i := 1 step 1 until len do x := x + 3;
4 go to Rome;

Examples for compound statements are as follows:

1 begin
2 x := 0;
3 for t := 0 step 5 until 100 do x := x + t;
4 if t = x then go to CONTINUE else x := 0;
5 end;

16

Examples for blocks are as follows:

1 Z: begin
2 integer i, j; real t;
3 for i := 0 step 1 until m do
4 begin
5 for j := 0 step 1 until m do
6 begin
7 z := z + i + j
8 end
9 end

10 end;

On more information on the scope rules of ALGOL 60 and the blocks see ALGOL
60 Scope Rules.

8.2 Assignment Statement
Assignment statements allow the programmer to assign values to one or more vari-
ables. The assignment operator is :=. In the case of subscript variables, the subscript
expression is evaluated before assignment. So an assignment to a variable in an array
gets assigned to only the subscript expression and not the whole array.
All variables on the left side of an assignment must be declared the same type as the
values on the right side. So a Boolean value can only be assigned to a Boolean variable.
If the variable is of type integer or real, the right side must be an arithmetic expression.
A real value can be assigned to an integer value, however, the assignment happens with
the following rounding: the largest integer that is not greater than the arithmetic ex-
pression E + 0.5.

Examples for assignment statements are as follows:

1 p := a[5] := n + 1;
2 f := f + 1;
3 V := Q > G & N;

8.3 Go To Statement
As mentioned in the initial text to this section, a go to statement is used to dynamically
control the program flow and to interrupt the code at certain locations. The location of
the successor of a go to statement is a Designational expression. So the next statement
to be executed will have the same label as the designation expression.
Go to statements can not lead outside the scope of a block. For more information see
ALGOL 60 Scope Rules.

17

Examples for go to statements are as follows:

1 go to town;
2 go to Rome[if p < 0 then S else S + 1];
3 go to if b < c then q else a[0];

8.4 Conditional Statement
Conditional statements are used to execute certain parts of a block or skip certain others
based on Boolean expressions. The known conditional statement of ALGOL 60 is the
if statement. The conditional statement of an if statement gets executed if the clause
of the if the statement is true, otherwise the statement gets skipped and if an else state-
ment exists, this statement will get executed. If statements can be chained by applying
another if statement within the else statement. It is important to note that between an if
and else there should not be a delimiter as it is still the same statement. If one wants to
execute more than one statement within an if or else branch one should create another
compound statement.

Examples for conditional statements are as follows:

1 if s then n := n + 1;
2 if p > 0 then V: q := n + m else go to P;
3 comment The following is one large conditional statement;
4 if p == true then
5 begin
6 if s < 0 then a := g / s else y := 5;
7 end
8 else if g != 0.0 then a := 5
9 else go to S;

8.5 For Statement
For statements execute the statement S declared right after the for statement 0 or more
times. The for statement also includes a controlled variable upon which a sequence of
assignments may take place. So the control flow of a for statement is to initially assign
a value to the controlled variable, execute the statement within the for statement, test
if the breaking condition has already been reached, and then either execute the assign-
ment and go to the statement within again or leave the for statement.
For statements could also be achieved by go to statements, however, they are much
easier to read for their purpose.

Examples for for statements are as follows:

18

1 for q := 0 step s until n do B[q] = A[q];
2 for i := 1 step 10 until 100 do s := s + i;

While statements are technically not part of ALGOL 60, however, it is still possible
to create while statements with the help of go to statements. For more information, I
suggest looking at the definition of go to and while languages and their power.

An example is the following:

1 R: V := V + E;
2 if V > 100 then go to EXIT;
3 go to R;
4 EXIT: V := V + 10;

8.6 Procedure Statement
Procedure statements exist to invoke procedures written in ALGOL 60. Procedure
Declaration will be discussed later. The parameter amount upon calling a procedure
must be the same as defined in the procedure declaration. The call of the procedure can
have several effects, depending on the parameters passed when invoked:

• Call by value:
The local parameters of the procedure receive the values of the parameters given
at the call of the procedure. The local parameters of the procedure are assigned
these values explicitly before entering the procedure body. The local parameters
are treated as local variables inside the procedure. Switch identifiers or procedure
identifiers can not be passed by value as they do not have an inherent value. To
define a formal parameter to be passed by value the keyword value has to be
defined at the parameter declaration of the procedure.

• Call by name:
The local parameters of the procedure are replaced by the actual parameter. In-
teresting is that the parameters given at the call are not evaluated upon entering
the procedure. This has interesting side effects when for example passing pro-
cedures or arrays as parameters. If arrays or procedures are given as parameters,
they must have the same dimensions as the arrays used within the procedure.

Examples for procedure statements are as follows:

1 Transpose(W, i + 1);
2 Spur(A) Order: (7) Result to: (V);

19

9 ALGOL 60 Declarations
Declarations in ALGOL 60 serve the purpose to define properties for identifiers within
a block. The statement of Compound statements and blocks was discussed previously.
More on ALGOL 60 Scope Rules later. Some sort of static variable declaration is
possible with the keyword own. Own declare a variable within a block to be the same
every time the program enters this block. All other declared values are undefined. It is
important that all identifiers must be declared within a program with the exception of
labels and formal parameters of procedures. An identifier can not be re-declared within
a blockhead.

9.1 Type Declaration
To declare certain identifiers to represent simple variables of a given type, one has to
declare this type at the blockhead. As mentioned at the beginning of the section, those
declarations may also be own. The variable data types possible for the type declaration
are real, integer, or Boolean. More on the ALGOL 60 Data Types was discussed earlier.

Examples for type declarations are as follows:

1 real s;
2 own integer n;
3 Boolean exists;

9.2 Array Declaration
The declaration of an array defines one or more identifiers to represent a one or multi-
dimensional array. The allowed types of arrays are integer or real. It can furthermore
be defined which type the subscripted variables are, which bounds the subscripted vari-
ables have and what the dimensions of the array are. The bound of the variables can
be defined by giving an upper and a lower bound separated by :, also called bound pair
list. The dimension of the array is defined by the number of entries in the bound pair
list. The type of subscripted is all of the same types if one is defined or real otherwise.
The subscripted values have no connection to the identity of the variables used in the
bound pair lists. Arrays are initiated with zeros or false when declared.

Examples for array declarations are as follows:

1 array value, value2 [-5:5, 10:20], s[0:100];
2 own integer array C[if b > 1 then 0:4 else 0:100];
3 Boolean array s[0:10];

20

9.3 Switch Declaration
With a switch declaration, one assigns values corresponding to a switch identifier. A
switch can be composed of one or more designation expressions which are associated
from left to right by positive integers starting at 1. To access one of those designation
expressions one has to pass the corresponding integer to access the value. The desig-
nation expressions get evaluated each time the values are accessed with the values of
the variables at access time. Variables defined outside the scope within the switch is
can not be accessed by the switch.

Examples for switch declarations are as follows:

1 switch S := p1, p2, p3;
2 switch Q := M1, M2, M3, if s > 4 then M4, else M5;

9.4 Procedure Declaration
To define the procedure associated with a procedure identifier, one has to declare this
procedure. A procedure consists of a block of code and a heading including formal
parameters of the procedure. The formal parameters will be, upon calling the proce-
dure, either be replaced or assigned with the parameters given by the caller. For more
information on Procedure Statement see the previous definitions. The procedure iden-
tifier must be named first after the keyword procedure. The types of the formal
parameters should be named at the beginning of a procedure. It is customary to also
include a commentary at the beginning of a procedure. A comment is placed between
the keyword comment and the separator ;.

It is important to note that procedures may also be typed where the return type will
be specified before the keyword procedure and the value to be returned should have the
same identifier as the procedure itself.

21

An example for a procedure declaration is as follows:

1 procedure transpose(a) Order: (n); value n;
2 array a; integer n;
3 comment Procedure to transpose a two dimensional matrix;
4 begin
5 real w; integer i, k;
6 for i := 1 step 1 until n do
7 for k := i + 1 step 1 until n do
8 begin
9 w := a[i, k];

10 a[i, k] := a[k, i];
11 a[k, i] := w
12 end
13 end

More examples will be shown in the section Procedures.

22

10 Procedures
As defined previously, procedures are the basic building blocks of ALGOL 60 and can
be best compared with functions in modern programming languages. As we have al-
ready heard, the parameter passing to procedures can be done in two ways, call by value
and call by name. This has ramifications for the behavior of algorithms as one may eas-
ily also pass procedures to procedures to be executed and so forth. In the following, we
will look at some interesting procedures which should highlight some interesting as-
pects of ALGOL 60. The procedures introduced will get from simple to more complex.

If one would like to test out the following procedures one could call them as speci-
fied and print out the result with the dummy function print provided by MARST.

A very simple but illustrative example of a procedure is the following. It is a pro-
cedure without any parameters that have one statement as its body. It could be called
by the statement simple from a block within the scope of the program or by the pro-
cedure itself:

1 procedure simple;
2 begin
3 Num := Num + 1;
4 end

The procedure can be called in the following way:

1 simple;

A bit more complex example would be the following. It is a typed procedure that
compares two strings and returns a Boolean value:

1 Boolean procedure match(int1, int2);
2 value int1,int2;
3 integer int1,int2;
4 begin
5 match := int1 = int2;
6 end

The procedure can be called in the following way:

1 Boolean b;
2 b := match(10,10);

Now, instead of typed procedures, one could pass a parameter by name to achieve
the same result:

23

1 Boolean procedure match(int1, int2, res);
2 value int1,int2;
3 integer int1,int2;
4 Boolean res;
5 begin
6 res := int1 = int2
7 end

The procedure can then be called in the following way:

1 Boolean b;
2 match(10,10,b);

Now to something a bit more complicated we will use different things we have
learned so far. We will introduce a procedure that involves an array, call by name, and
a for loop:

1 procedure spur(a)order:(n)result:(s);
2 value n;
3 array a; integer n; real s;
4 begin
5 integer k;
6 s := 0;
7 for k := 1 step 1 until n do s := s + a[k,k]
8 end

The procedure can then be called (here with an identity matrix) in the following
way:

1 array a[0:5,0:5];
2 integer n, i; real s;
3 n := 5;
4 for i := 0 step 1 until n do a[i,i] := 1;
5 spur(a)order:(n)result:(s);

To put additional knowledge to the test we will now look at a procedure that in-
cludes conditional statements, go to statements, and the outstring procedure:

1 procedure checkEven(num);
2 value num;
3 integer num;
4 begin
5 integer mod;
6 mod := num - ((num%2)*2); comment This represents the

mod operator;
7 if mod = 0 then go to even else go to odd;
8

24

9 even: begin outstring(1, "Is even"); go to exit end;
10 odd: begin outstring(1, "Is odd"); go to exit end;
11 exit:
12 end;

The procedure can then be called in the following way:

1 integer n;
2 n := -10;
3
4 checkEven(n)

Many more examples could be given, however, I am content that you can produce
any number of procedures from here on with the help of this tutorial.

25

11 ALGOL 60 Scope Rules
ALGOL 60 was one of the first, if not the first, to introduce block scopes into a pro-
gramming language. Before ALGOL 60 most languages had only the ability to in-
troduce some kind of block rules by go to statements, however, those proved to be
insufficient, and the block rules were introduced. In ALGOL 60 a block is defined as
follows:

1 L: L: ... begin D;D;...D;S;S;...S;S end

With L denoting labels, D denoting declarations, and S denoting statements. The
number of each is arbitrary. Now the interesting part is that the identifiers declared
within a block are local to this block and will have their own space in memory. So this
identifier and its value will have no existence outside of this block and any entity pre-
sented by the same identifier declared outside this block will not be accessible within
the block. However, variables declared outside the block that are not re-declared within
the block are accessible to the block.

Labels are the exception to this rule because labels are always local to the block
within which they occur. Since labels are inherently local to a block, a go to statement
can not lead outside a block.

To reiterate, declarations within a block are local to this block and have the sig-
nificance declared within this block, and are not accessible from the outside. This is
recursively true for blocks within blocks. Upon exit from a block, all variables declared
within a block lose their significance.

An example to illustrate this is the following:

1 begin
2 integer i, k;
3 Boolean b;
4 real v;
5 i := 0;
6 b := true;
7 comment v is real declared but has no value, i is
8 integer with value 0, b is Boolean with value false;
9 begin

10 integer i;
11 v := 0.0;
12 i := 10;
13 comment i is integer and local to this block with
14 value 10, v is real and same as in outer block but
15 now with value 0.0, boolean b is still true and
16 same as in outer scope;
17 begin
18 integer b;

26

19 i := i + 10;
20 v := 5.0;
21 comment i is the same as in the previous block
22 and has now value 20, v is the same as in the
23 outermost block and has value 5.0, b is now of
24 type int with no value;
25 end
26 comment i currently has value 20, b is boolean
27 with value true, v is real with value 5.0
28 end
29 comment i has value 0, b is boolean with value true,
30 v is real with value 5.0
31 end

27

12 Recursion
Recursion is supported in ALGOL 60 and can be achieved by procedure calls. An
example is best illustrated by the well-known merge sort algorithm. The following
procedures are also good examples of how to implement while loops with go to state-
ments and more:

1 procedure merge(arr, l, m, r);
2 value l,m,r;
3 array arr; integer l,m,r;
4 begin
5 integer n1, n2, i, j, k;
6 array L[0:m-l+1], R[0:r-m];
7
8 n1 := m-l+1;
9 n2 := r-m;

10
11 for i := 0 step 1 until n1 - 1 do L[i] := arr[l + i];
12 for j := 0 step 1 until n2 - 1 do R[j] := arr[m + 1 +

j];
13
14 i := 0;
15 j := 0;
16
17 k := l;
18
19 WHILE:
20 if i >= n1 | j >= n2 then go to EXIT;
21
22 if L[i] <= R[j] then
23 begin
24 arr[k] := L[i];
25 i := i + 1
26 end
27 else
28 begin
29 arr[k] := R[j];
30 j := j + 1
31 end;
32 k := k + 1;
33
34 go to WHILE;
35 EXIT:
36
37 WHILE2:
38 if i >= n1 then go to EXIT2;

28

39
40 arr[k] := L[i];
41 i := i + 1;
42 k := k + 1;
43
44 go to WHILE2;
45 EXIT2:
46
47 WHILE3:
48 if j >= n2 then go to EXIT3;
49
50 arr[k] := R[j];
51 j := j + 1;
52 k := k + 1;
53
54 go to WHILE3;
55 EXIT3:
56
57 end;
58
59 procedure mergeSort(arr, l, r);
60 value l, r;
61 array arr; integer l, r;
62 begin
63 integer m;
64 m := (l+r-1)%2;
65 if l >= r then go to EXIT;
66
67 begin
68 mergeSort(arr,l,m);
69 mergeSort(arr,m+1,r);
70 merge(arr,l,m,r)
71 end;
72 EXIT:
73
74 end;

You can also find a program to run an instance of this merge-sort algorithm in the
provided materials.

29

13 Simple Programs
In this section, I have assembled a few simple executable programs written in ALGOL
60. All programs can also be found in the sub-directory programs.

The programs can be executed as follows:

1. Open a command line and navigate to the directory where the programs are lo-
cated.

2. Type marst NAME_OF_PROGRAM.alg -o NAME_OF_PROGRAM.c.

3. If there are no errors the translator creates the C file NAME_OF_PROGRAM.c.

4. Compile and link the file with the following command gcc NAME_OF_PROGRAM.c
-lalgol -lm -o NAME_OF_PROGRAM.

5. Run your executable ./NAME_OF_PROGRAM.

6. If everything worked fine you should see the expected output printed on the
command line.

The programs here in the report are not commented for brevity sake, however the
source code programs are fully commented.

13.1 Coin flip
In the following we will introduce a simple program that can generate random numbers
with a procedure random, evaluates the random number by putting it into the two
categories head or tail and do this 10’000 times to see if the random number generator
is truly random:

1 begin
2 integer procedure mod(a, n);
3 value a, n;
4 integer a, n;
5 begin
6 mod := a - ((a%n)*n)
7 end;
8
9 procedure random(lim, res);

10 value lim;
11 integer lim, res;
12 begin
13 own integer a; own Boolean b;
14
15 if !b then

30

16 begin
17 a := 100001;
18 b := true
19 end;
20 a := mod((a * 125), 2796203);
21 res := mod(a, lim) + 1
22 end;
23
24 procedure testCoinflip(res, max);
25 value max;
26 integer res, max;
27 begin
28 integer i, tmp;
29
30 res := 0;
31 for i := 0 step 1 until max do
32 begin
33 tmp := 0;
34 random(100, tmp);
35 if tmp < 50 then res := res + 1
36 end
37 end;
38
39 integer res, max; real percentage;
40
41 res := 0; percentage := 0; max := 10000;
42
43 testCoinflip(res, max);
44
45 percentage := (res / max) * 100;
46 print(percentage)
47 end

13.2 Greatest number
In the following program, we will declare an integer array and get from the procedure
greatestNum the largest item from the array. The algorithm described in the proce-
dure greatestNum was also mentioned in the paper Proof of Algorithms by General
Snapshots by Peter Naur. We will reuse the random procedure defined before to fill the
array with random numbers.

1 begin
2 integer procedure mod(a, n);
3 value a, n;
4 integer a, n;

31

5 begin
6 mod := a - ((a%n)*n)
7 end;
8
9 integer procedure random(lim);

10 value lim;
11 integer lim;
12 begin
13 own integer a; own Boolean b;
14
15 if !b then
16 begin
17 a := 100001;
18 b := true
19 end;
20 a := mod((a * 125), 2796203);
21 random := mod(a, lim) + 1
22 end;
23
24 procedure greatestNum(A, R, N);
25 value N;
26 array A; integer R, N;
27 begin
28 integer r, i;
29
30 r := 0;
31 for i := 1 step 1 until N do
32 if A[i] > A[r] then r := i;
33
34 R := A[r]
35 end greatestNum;
36
37 array A[0:20];
38 integer N, i, R;
39
40 N := 20;
41
42 for i := 0 step 1 until N do A[i] := random(100);
43
44 greatestNum(A, R, N);
45
46 print(A);
47 print(R)
48 end

32

13.3 Fisher–Yates shuffle
In the following program, we will declare an integer array and shuffle the array with the
help of the procedure shuffle. The algorithm described in the procedure shuffle
is named after Ronald Fisher and Frank Yates, who first described it, and is also known
as the Knuth shuffle after Donald Knuth. We will reuse the random procedures defined
before to get random numbers.

1 begin
2 integer procedure mod(a, n);
3 value a, n;
4 integer a, n;
5 begin
6 mod := a - ((a%n)*n)
7 end;
8
9 integer procedure random(lim);

10 value lim;
11 integer lim;
12 begin
13 own integer a; own Boolean b;
14
15 if !b then
16 begin
17 a := 100001;
18 b := true
19 end;
20 a := mod((a * 125), 2796203);
21 random := mod(a, lim) + 1
22 end;
23
24 procedure swap(arr, i, j);
25 value i, j;
26 array arr; integer i, j;
27 begin
28 integer tmp;
29
30 tmp := arr[i];
31 arr[i] := arr[j];
32 arr[j] := tmp
33 end;
34
35 procedure shuffle(arr, h);
36 comment This is an implementation of the
37 Fisher-Yates shuffle;
38 value h;
39 array arr; integer h;

33

40 begin
41 integer j, i;
42 for i := h step -1 until 1 do
43 begin
44 j := random(i);
45 swap(arr, i, j)
46 end
47 end;
48
49 array arr[0:10];
50 integer h, i;
51
52 h := 10;
53 for i := 0 step 1 until h do arr[i] := i;
54
55 print(arr);
56 shuffle(arr, h);
57 print(arr)
58
59 end

14 Conclusion
This concludes the ALGOL 60 Tutorial. I hope you could learn a thing or two in
these pages and I hope that some interesting ALGOL 60 programs will come out of
people reading this tutorial. It has been interesting to closely read the specifications of
a programming language, to translate it into workable code, and then to write a tutorial
on how to write proper ALGOL 60 programs.

34

References
Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis, A. J.,

Rutishauser, H., Samelson, K., Vauquois, B., et al. (1960). Report on the algorithmic
language algol 60. Numerische Mathematik, 2(1):106–136.

35

	Introduction
	Background
	ALGOL 60 Environment Setup
	Text Editor
	The C Compiler
	C Compiler Installation
	Installation on UNIX
	Installation on Mac OS

	ALGOL 60 Translator Installation

	ALGOL 60 Program Structure
	ALGOL 60 Hello World Example
	Compile and Execute an ALGOL 60 Program

	ALGOL 60 Basic Syntax
	Formal Notation
	Symbols
	Letters
	Digits
	Logical values
	Delimiters

	Identifiers
	Numbers
	Strings
	Indentation

	ALGOL 60 Data Types
	Integer Types
	Real Types
	Boolean Types

	ALGOL 60 Expressions
	Variables
	Function designators
	Arithmetic expressions
	Arithmetic expression types

	Boolean expressions
	Designational expression

	ALGOL 60 Statements
	Compound statements and blocks
	Assignment Statement
	Go To Statement
	Conditional Statement
	For Statement
	Procedure Statement

	ALGOL 60 Declarations
	Type Declaration
	Array Declaration
	Switch Declaration
	Procedure Declaration

	Procedures
	ALGOL 60 Scope Rules
	Recursion
	Simple Programs
	Coin flip
	Greatest number
	Fisher–Yates shuffle

	Conclusion

