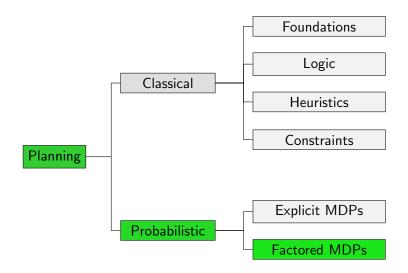
## Planning and Optimization G4. Monte-Carlo Tree Search: Framework

#### Malte Helmert and Gabriele Röger

Universität Basel

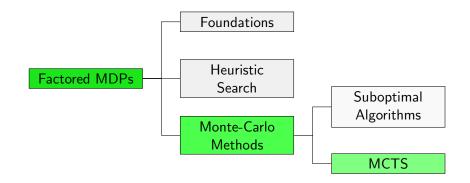
Framework

### Content of this Course





### Content of this Course: Factored MDPs



| Motivatio | n |
|-----------|---|
| 000       |   |

Framework 000000000000 Summary 00

# Motivation

| Motivation | MCTS Tree |  |
|------------|-----------|--|
| 000        |           |  |
|            |           |  |

### Motivation

Previously discussed Monte-Carlo methods:

- Hindsight Optimization suffers from assumption of clairvoyance
- Policy Simulation overcomes assumption of clairvoyance by sampling the execution of a policy
- Policy Simulation is suboptimal due to inability of policy to improve
- Sparse Sampling achieves near-optimality without considering all outcomes
- Sparse Sampling wastes time in non-promising parts of state space

Framework 0000000000000

# Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) has several similarities with algorithms we have already seen:

- Like (L)RTDP, MCTS performs trials (also called rollouts)
- Like Policy Simulation, trials simulate execution of a policy

# Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) has several similarities with algorithms we have already seen:

- Like (L)RTDP, MCTS performs trials (also called rollouts)
- Like Policy Simulation, trials simulate execution of a policy
- Like other Monte-Carlo methods, Monte-Carlo backups are performed

# Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) has several similarities with algorithms we have already seen:

- Like (L)RTDP, MCTS performs trials (also called rollouts)
- Like Policy Simulation, trials simulate execution of a policy
- Like other Monte-Carlo methods, Monte-Carlo backups are performed
- Like Sparse Sampling, an outcome is only explicated if it is sampled in a trial

| Motivati |  |
|----------|--|
|          |  |

Framework

Summary 00

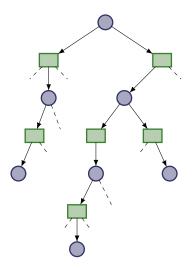
# MCTS Tree

| MCTS Tree |  |
|-----------|--|
| 0000      |  |
|           |  |

- Unlike previous methods, the SSP is explicated as a tree
- Duplicates (also: transpositions) possible,

i.e., multiple search nodes with identical associated state

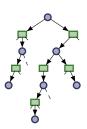
 Search tree can (and often will) have unbounded depth



| Motivation | MCTS Tree |  |
|------------|-----------|--|
|            | 00000     |  |
|            |           |  |

### Tree Structure

- Differentiate between two types of search nodes:
  - Decision nodes
  - Chance nodes
- Search nodes correspond 1:1 to traces from initial state
- Decision and chance nodes alternate
- Decision nodes correspond to states in a trace
- Chance nodes correspond to actions in a trace
- Decision nodes have one child node for each applicable action (if all children are explicated)
- Chance nodes have one child node for each outcome (if all children are explicated)



| MCTS Tree |  |
|-----------|--|
| 00000     |  |
|           |  |

### Definition (MCTS Tree)

An MCTS tree is given by a tuple  $\mathcal{G} = \langle d_0, D, C, E \rangle$ , where

- D and C are disjoint sets of decision and chance nodes (simply search node if the type does not matter)
- $d_0 \in D$  is the root node
- E ⊆ (D × C) ∪ (C × D) is the set of edges such that the graph ⟨D ∪ C, E⟩ is a tree

Note: can be regarded as an AND/OR tree

# Search Node Annotations

### Definition (Search Node Annotations)

Let  $\mathcal{G} = \langle d_0, D, C, E \rangle$  be an MCTS Tree.

- Each search node  $n \in D \cup C$  is annotated with
  - a visit counter N(n)
  - a state s(n)
- Each decision node  $d \in D$  is annotated with
  - a state-value estimate  $\hat{V}(d)$
  - a probability p(d)
- Each chance node  $c \in C$  is annotated with
  - an action-value estimate (or Q-value estimate)  $\hat{Q}(c)$

• an action a(c)

Note: some annotations can be computed on the fly to save memory

| Mot |  |  |
|-----|--|--|
|     |  |  |

Framework •00000000000

Summary 00

# Framework

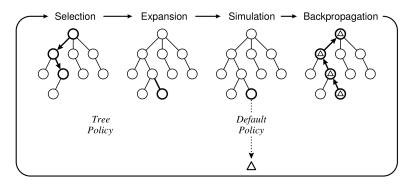
| MCTS Tree<br>00000 | Framework<br>o●oooooooooo |  |
|--------------------|---------------------------|--|
|                    |                           |  |

## Trials

- The MCTS tree is built in trials
- Trials are performed as long as resources (deliberation time, memory) allow
- Initially, the MCTS tree consists of only the root node for the initial state
- Trials (may) add search nodes to the tree
- MCTS tree at the end of the *i*-th trial is denoted with G<sup>i</sup>
- Use same superscript for annotations of search nodes

| MCTS Tree<br>00000 | Framework<br>oo●ooooooooo |  |
|--------------------|---------------------------|--|
|                    |                           |  |





Taken from Browne et al., "A Survey of Monte Carlo Tree Search Methods", 2012

### Phases of Trials

Each trial consists of (up to) four phases:

- Selection: traverse the tree by sampling the execution of the tree policy until
  - In action is applicable that is not explicated, or
  - an outcome is sampled that is not explicated, or
  - a goal state is reached (jump to backpropagation)
- Expansion: create search nodes for the applicable action and a sampled outcome (case 1) or just the outcome (case 2)
- Simulation: simulate default policy until a goal is reached
- Backpropagation: update visited nodes in reverse order by
  - increasing visit counter by 1
  - performing Monte-Carlo backup of state-/action-value estimate

### Monte-Carlo Backups in MCTS Tree

- let d<sub>0</sub>, c<sub>0</sub>, ..., c<sub>n-1</sub>, d<sub>n</sub> be the decision and chance nodes that were visited in a trial of MCTS (including explicated ones),
- let h be the cost incurred by the simulation of the default policy until a goal state is reached
- each decision node  $d_j$  for  $0 \le j \le n$  is updated by

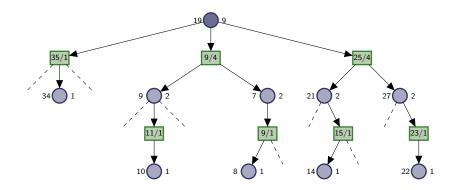
$$\hat{V}^i(d_j) := \hat{V}^{i-1}(d_j) + rac{1}{N^i(d_j)} (\sum_{k=j}^{n-1} \mathit{cost}(\mathit{a}(c_k)) + h - \hat{V}^{i-1}(d_j))$$

• each chance node  $c_j$  for  $0 \le j < n$  is updated by

$$\hat{Q}^{i}(c_{j}) := \hat{Q}^{i-1}(c_{j}) + rac{1}{N^{i}(c_{j})} (\sum_{k=j}^{n-1} cost(a(c_{k})) + h - \hat{Q}^{i-1}(c_{j}))$$

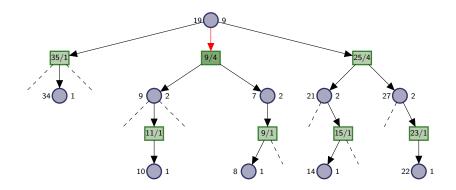
Framework 000000000000

# MCTS: (Unit-cost) Example



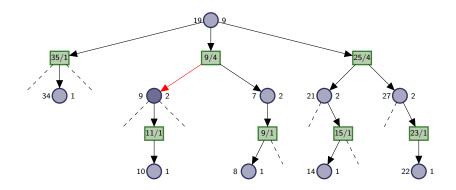
Framework 000000000000

# MCTS: (Unit-cost) Example



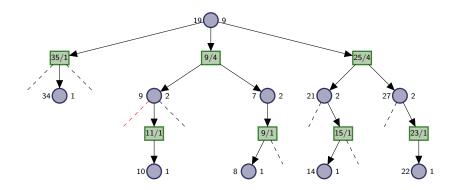
Framework 000000000000

# MCTS: (Unit-cost) Example



Framework 000000000000

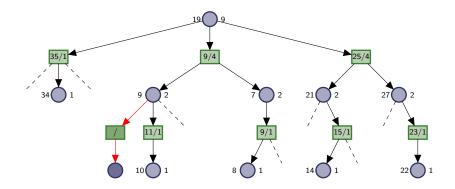
# MCTS: (Unit-cost) Example



Framework 000000000000

# MCTS: (Unit-cost) Example

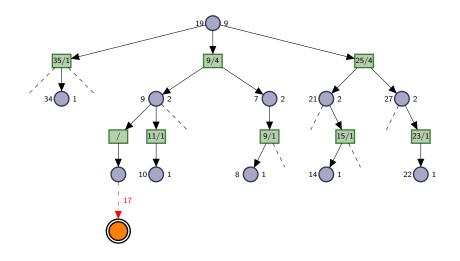
### Expansion phase: create search nodes



Framework 000000000000

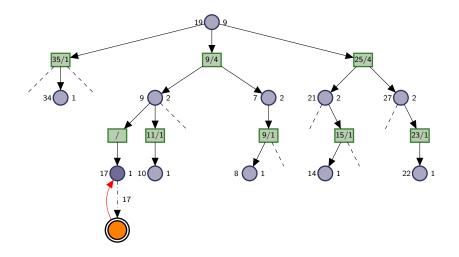
# MCTS: (Unit-cost) Example

### Simulation phase: apply default policy until goal



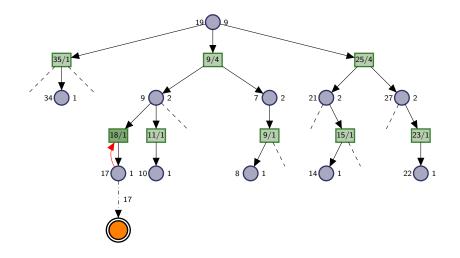
Framework 000000000000 Summary 00

# MCTS: (Unit-cost) Example



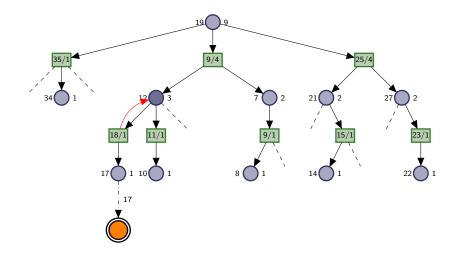
Framework 000000000000 Summary 00

# MCTS: (Unit-cost) Example



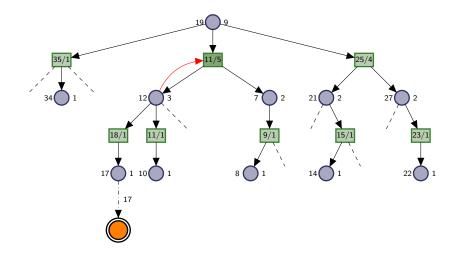
Framework 000000000000 Summary 00

# MCTS: (Unit-cost) Example



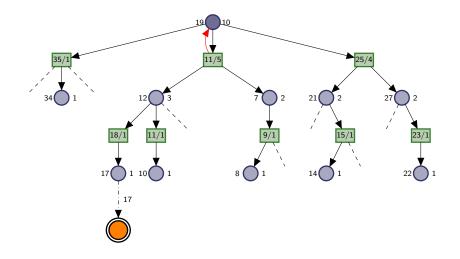
Framework 000000000000 Summary 00

# MCTS: (Unit-cost) Example



Framework 000000000000 Summary 00

# MCTS: (Unit-cost) Example



| MCTS Tree | Framework   |  |
|-----------|-------------|--|
|           | 00000000000 |  |
|           |             |  |

## MCTS Framework

Member of MCTS framework are specified in terms of:

- Tree policy
- Default policy

| MCTS Tree | Framework  |  |
|-----------|------------|--|
|           | 0000000000 |  |

### MCTS Tree Policy

### Definition (Tree Policy)

Let  $\mathcal{T}$  be an SSP. An MCTS tree policy is a probability distribution  $\pi(a \mid d)$  over all  $a \in A(s(d))$  for each decision node d.

Note: The tree policy may take information annotated in the current tree into account.

| 000 00000000000000000 00 |     | MCTS Tree | Framework   |    |
|--------------------------|-----|-----------|-------------|----|
|                          | 000 | 00000     | 00000000000 | 00 |

### MCTS Default Policy

### Definition (Default Policy)

Let  $\mathcal{T}$  be an SSP. An MCTS default policy is a probability distribution  $\pi(a \mid s)$  over actions  $a \in A(s)$  for each state s.

Note: The default policy is independent of the MCTS tree.

Framework

Summary 00

### Monte-Carlo Tree Search

### MCTS for SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_\star \rangle$

 $\begin{aligned} & d_0 = \text{create root node associated with } s_0 \\ & \textbf{while time allows:} \\ & \text{visit_decision_node}(d_0, \mathcal{T}) \\ & \textbf{return } a(\arg\min_{c \in \text{children}(d_0)} \hat{Q}(c)) \end{aligned}$ 

Framework

# MCTS: Visit a Decision Node

### visit\_decision\_node for decision node d, SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_{\star} \rangle$

### if $s(d) \in S_{\star}$ then return 0

if there is  $a \in A(s(d))$  s.t.  $a(c) \neq a$  for all  $c \in children(d)$ :

select such an *a* and add node *c* with a(c) = a to children(*d*) else:

$$c = tree\_policy(d)$$
  

$$cost = visit\_chance\_node(c, T)$$
  

$$N(d) := N(d) + 1$$
  

$$\hat{V}(d) := \hat{V}(d) + \frac{1}{N(d)} \cdot (cost - \hat{V}(d))$$
  
**return** cost

Framework

# MCTS: Visit a Chance Node

visit\_chance\_node for chance node c, SSP  $\mathcal{T} = \langle S, L, c, T, s_0, S_\star 
angle$ 

 $s' \sim \operatorname{succ}(s(c), a(c))$ 

let d be the node in children(c) with s(d) = s'

if there is no such node:

add node d with s(d) = s' to children(c)cost = sample\_default\_policy(s') $N(d) := 1, \hat{V}(d) := cost$ 

else:

 $cost = visit\_decision\_node(d, \mathcal{T})$ cost = cost + cost(s(c), a(c))N(c) := N(c) + 1 $\hat{Q}(c) := \hat{Q}(c) + \frac{1}{N(c)} \cdot (cost - \hat{Q}(c))$ **return** cost

| Mo |  |
|----|--|
|    |  |

Framework

Summary ●0

# Summary

| MCTS Tree | Summary |
|-----------|---------|
|           | 00      |
|           |         |

## Summary

- Monte-Carlo Tree Search is a framework for algorithms
- MCTS algorithms perform trials
- Each trial consists of (up to) 4 phases
- MCTS algorithms are specified by two policies:
  - a tree policy that describes behavior "in" tree
  - and a default policy that describes behavior "outside" of tree