

4.	Monte-Carlo	Tree	Search:	Framework

Motivation

Previously discussed Monte-Carlo methods:

- Hindsight Optimization suffers from assumption of clairvoyance
- Policy Simulation overcomes assumption of clairvoyance by sampling the execution of a policy
- Policy Simulation is suboptimal due to inability of policy to improve
- Sparse Sampling achieves near-optimality without considering all outcomes
- Sparse Sampling wastes time in non-promising parts of state space

M. Helmert, G. Röger (Universität Basel)

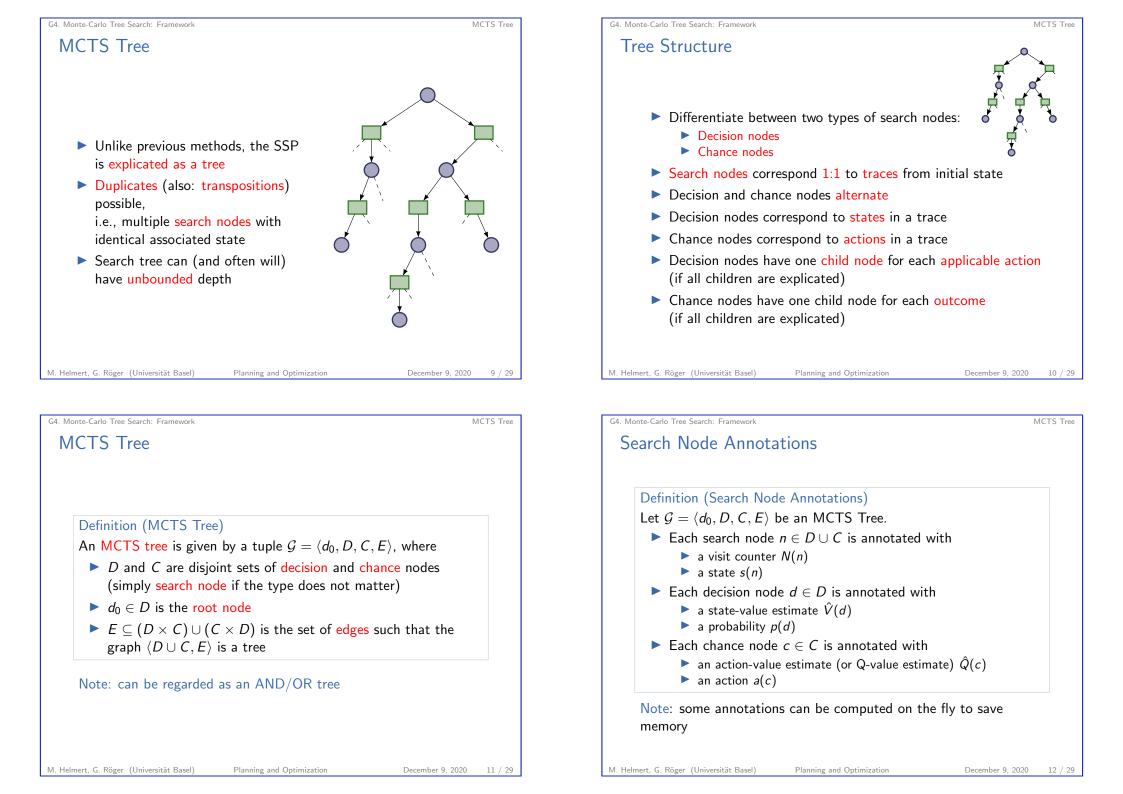
Planning and Optimization

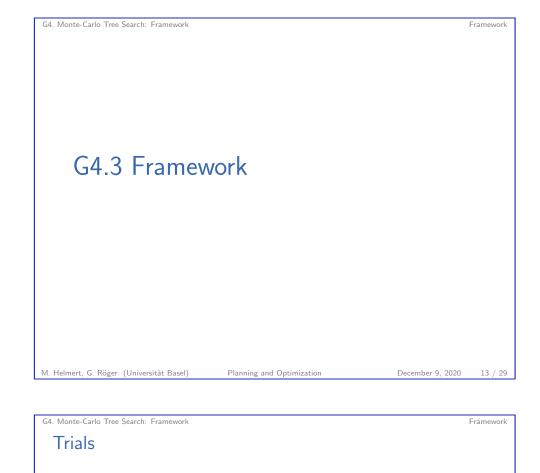
December 9, 2020 6 / 29

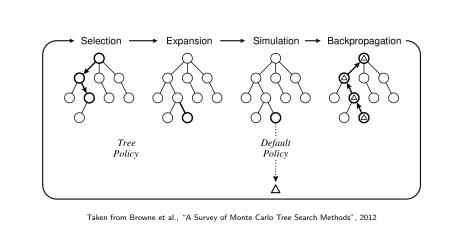
Motivation

Motivation

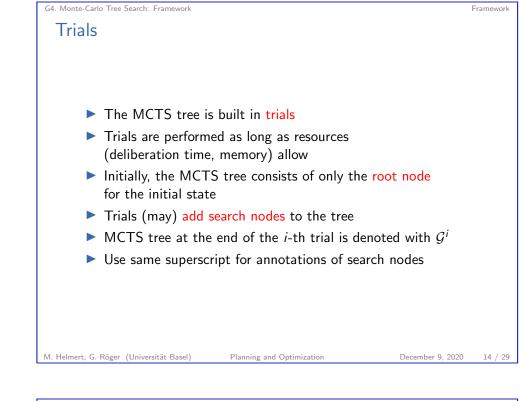
Planning and Optimization

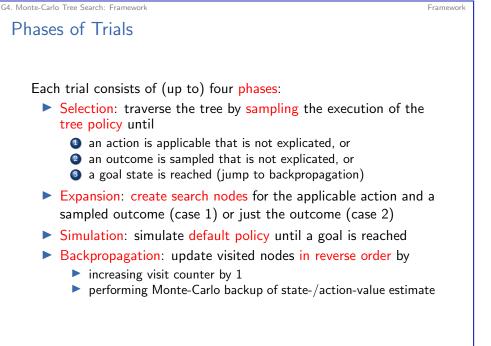






Planning and Optimization





Planning and Optimization

15 / 29

Monte-Carlo Backups in MCTS Tree

- let d₀, c₀,..., c_{n-1}, d_n be the decision and chance nodes that were visited in a trial of MCTS (including explicated ones),
- let h be the cost incurred by the simulation of the default policy until a goal state is reached
- ▶ each decision node d_j for $0 \le j \le n$ is updated by

$$\hat{V}^i(d_j) := \hat{V}^{i-1}(d_j) + rac{1}{N^i(d_j)} (\sum_{k=j}^{n-1} \mathit{cost}(\mathit{a}(c_k)) + h - \hat{V}^{i-1}(d_j))$$

▶ each chance node c_j for $0 \le j < n$ is updated by

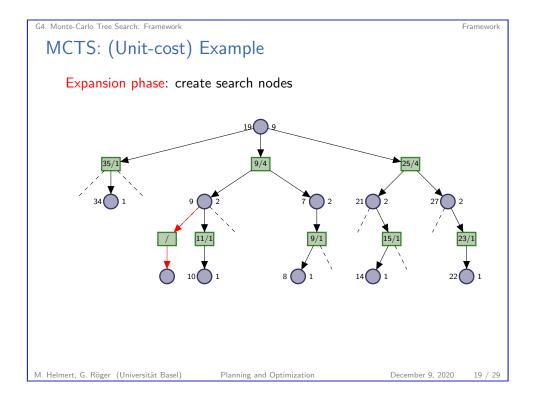
$$\hat{Q}^{i}(c_{j}) := \hat{Q}^{i-1}(c_{j}) + rac{1}{N^{i}(c_{j})} (\sum_{k=j}^{n-1} cost(a(c_{k})) + h - \hat{Q}^{i-1}(c_{j}))$$

Planning and Optimization

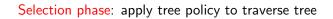
M. Helmert, G. Röger (Universität Basel)

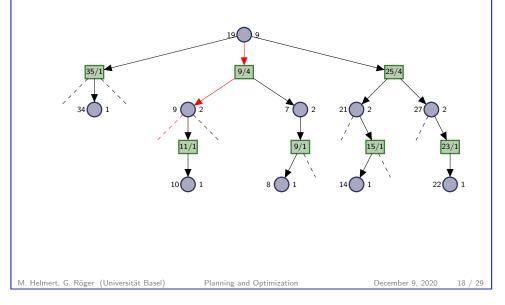
December 9, 2020 17 / 29

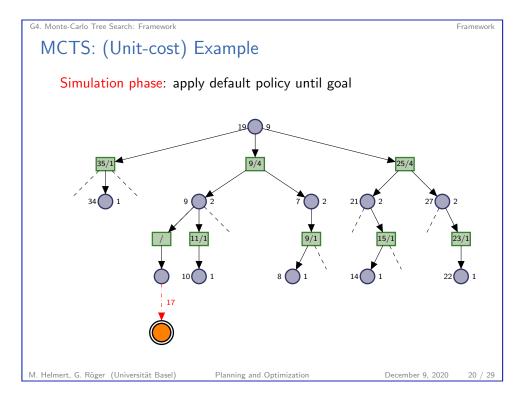
Framework

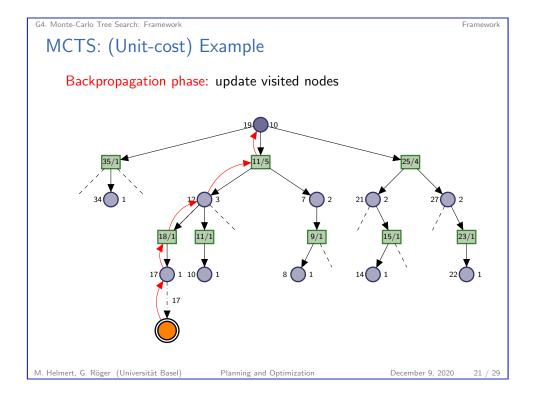


MCTS: (Unit-cost) Example









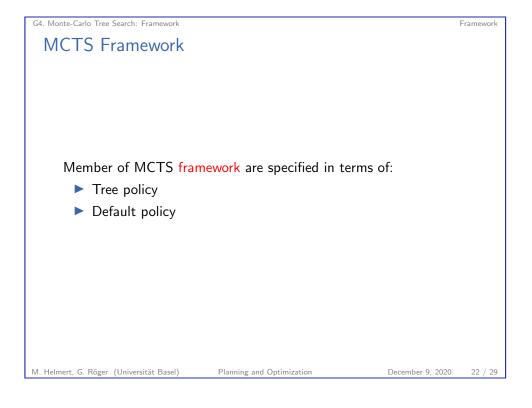
Framework

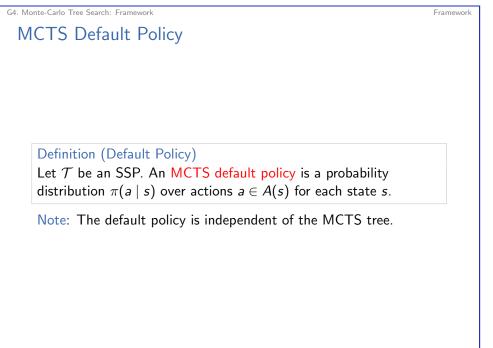
MCTS Tree Policy

Definition (Tree Policy)

Let \mathcal{T} be an SSP. An MCTS tree policy is a probability distribution $\pi(a \mid d)$ over all $a \in A(s(d))$ for each decision node d.

Note: The tree policy may take information annotated in the current tree into account.





Monte-Carlo Tree Search

MCTS for SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_{\star} \rangle$

 d_0 = create root node associated with s_0 while time allows: visit_decision_node(d_0, \mathcal{T}) **return** $a(\arg \min_{c \in \text{children}(d_0)} \hat{Q}(c))$

M. Helmert, G. Röger (Universität Basel)

December 9, 2020

Framework

25 / 29

G4. Monte-Carlo Tree Search: Framework Framework MCTS: Visit a Chance Node visit_chance_node for chance node *c*, SSP $\mathcal{T} = \langle S, L, c, T, s_0, S_{\star} \rangle$ $s' \sim \operatorname{succ}(s(c), a(c))$ let d be the node in children(c) with s(d) = s'if there is no such node: add node d with s(d) = s' to children(c) $cost = sample_default_policy(s')$ $N(d) := 1, \hat{V}(d) := \text{cost}$ else: $cost = visit_decision_node(d, T)$ cost = cost + cost(s(c), a(c))N(c) := N(c) + 1 $\hat{Q}(c) := \hat{Q}(c) + rac{1}{N(c)} \cdot (\operatorname{cost} - \hat{Q}(c))$ return cost Planning and Optimization 27 / 29

Planning and Optimization

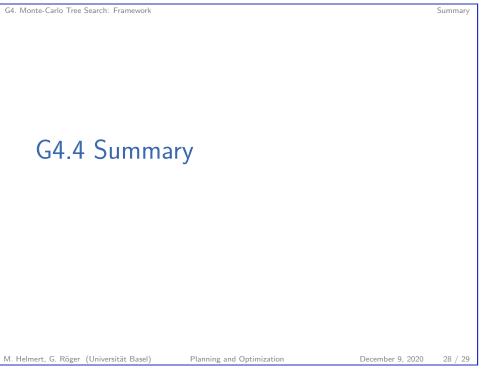
MCTS: Visit a Decision Node

visit_decision_node for decision node d, SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_\star \rangle$ if $s(d) \in S_{\star}$ then return 0 if there is $a \in A(s(d))$ s.t. $a(c) \neq a$ for all $c \in children(d)$: select such an a and add node c with a(c) = a to children(d)else: $c = tree_policy(d)$ $cost = visit_chance_node(c, T)$ N(d) := N(d) + 1 $\hat{V(d)} := \hat{V(d)} + \frac{1}{N(d)} \cdot (\operatorname{cost} - \hat{V}(d))$ return cost

Planning and Optimization

M. Helmert, G. Röger (Universität Basel)

December 9, 2020 26 / 29



Summary

Summary

- Monte-Carlo Tree Search is a framework for algorithms
- MCTS algorithms perform trials
- Each trial consists of (up to) 4 phases
- MCTS algorithms are specified by two policies:
 - a tree policy that describes behavior "in" tree
 - and a default policy that describes behavior "outside" of tree

Planning and Optimization De

December 9, 2020 29 / 29