

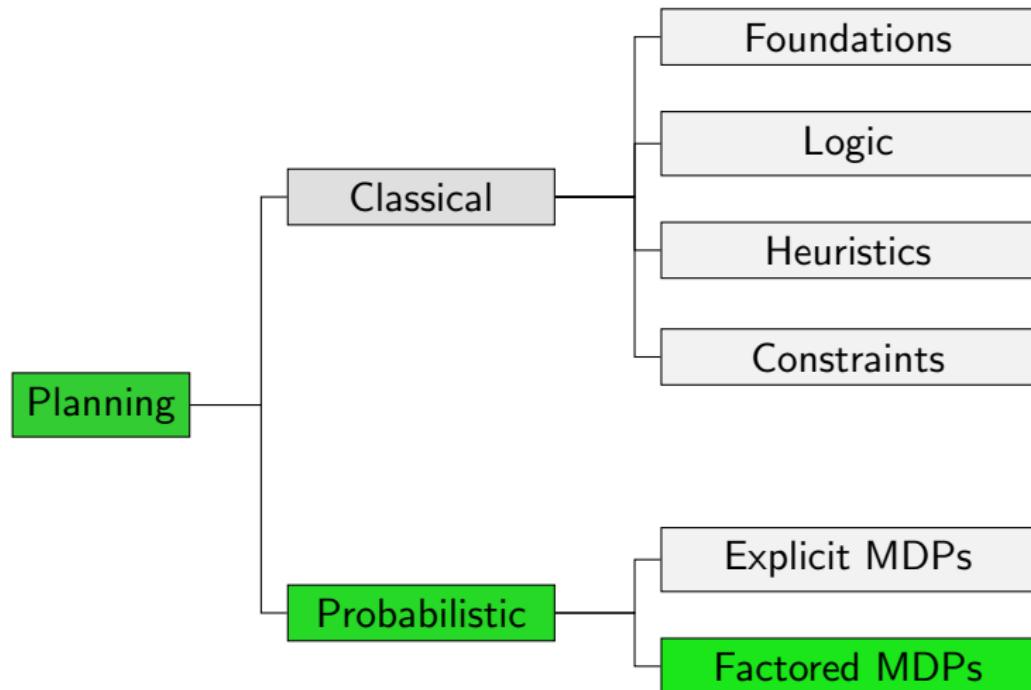
Planning and Optimization

G3. Asymptotically Suboptimal Monte-Carlo Methods

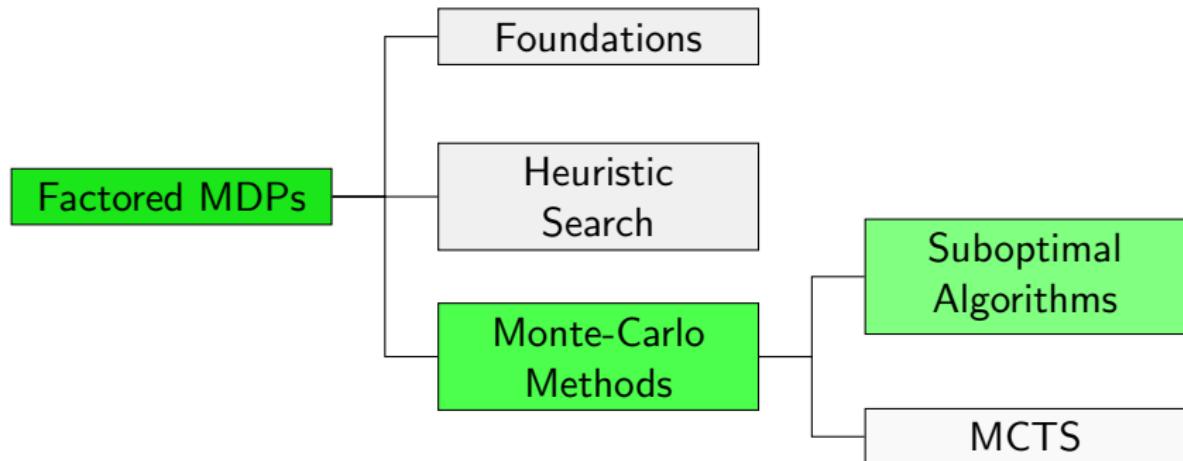
Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course



Content of this Course: Factored MDPs



Motivation

●○

Monte-Carlo Methods

○○○○○○

HOP

○○○○○○

Policy Simulation

○○○

Sparse Sampling

○○○○

Summary

○○

Motivation

Monte-Carlo Methods: Brief History

- 1930s: first researchers experiment with Monte-Carlo methods
- 1998: Ginsberg's GIB player competes with Bridge experts
- 2002: Kearns et al. propose Sparse Sampling
- 2002: Auer et al. present UCB1 action selection for multi-armed bandits
- 2006: Coulom coins term Monte-Carlo Tree Search (MCTS)
- 2006: Kocsis and Szepesvári combine UCB1 and MCTS to the famous MCTS variant, UCT
- 2007–2016: Constant progress of MCTS in Go culminates in AlphaGo's historical defeat of dan 9 player Lee Sedol

Motivation
oo

Monte-Carlo Methods
●oooooo

HOP
ooooooo

Policy Simulation
ooo

Sparse Sampling
oooo

Summary
oo

Monte-Carlo Methods

Monte-Carlo Methods: Idea

- Summarize a broad **family of algorithms**
- Decisions are based on **random samples**
(Monte-Carlo sampling)
- Results of samples are **aggregated** by computing the **average**
(Monte-Carlo backups)
- Apart from that, algorithms can **differ** significantly

Careful: Many different definitions of MC methods in the literature

Types of Random Samples

Random samples have in common that something is drawn from a given probability distribution. Some examples:

- a determinization is sampled (Hindsight Optimization)
- runs under a fixed policy are simulated (Policy Simulation)
- considered outcomes are sampled (Sparse Sampling)
- runs under an evolving policy are simulated (Monte-Carlo Tree Search)

Reminder: Bellman Backups

Algorithms like Value Iteration or (L)RTDP use the **Bellman equation** as an **update procedure**.

The i -th **state-value estimate** of state s , $\hat{V}^i(s)$, is computed with **Bellman backups** as

$$\hat{V}^i(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}^{i-1}(s') \right).$$

(Some algorithms use a heuristic if the state-value estimate on the right hand side of the Bellman backup is undefined.)

Monte-Carlo Backups

Monte-Carlo methods instead estimate state-values by **averaging over all samples**.

Let $N^i(s)$ be the number of **samples** for state s in the first i algorithm iterations and let $cost^k(s)$ be the cost for s in the k -th sample ($cost^k(s) = 0$ if the k -th sample has no estimate for s).

The i -th **state-value estimate** of state s , $\hat{V}^i(s)$, is computed with **Monte-Carlo backups** as

$$\hat{V}^i(s) := \frac{1}{N^i(s)} \cdot \sum_{k=1}^i cost^k(s).$$

Monte-Carlo Backups: Properties

- no need to store $cost^k(s)$ for $k = 1, \dots, i$:
it is possible to compute Monte-Carlo backups **iteratively** as

$$\hat{V}^i(s) := \hat{V}^{i-1}(s) + \frac{1}{N^i(s)}(cost^i(s) - \hat{V}^{i-1}(s))$$

- no need to know **SSP model** for backups
- if s is a random variable, $\hat{V}^i(s)$ converges to $\mathbb{E}[s]$
due to the **strong law of large numbers**
- if s is not a random variable, this is not always the case

Motivation
oo

Monte-Carlo Methods
oooooo

HOP
●ooooo

Policy Simulation
ooo

Sparse Sampling
oooo

Summary
oo

Hindsight Optimization

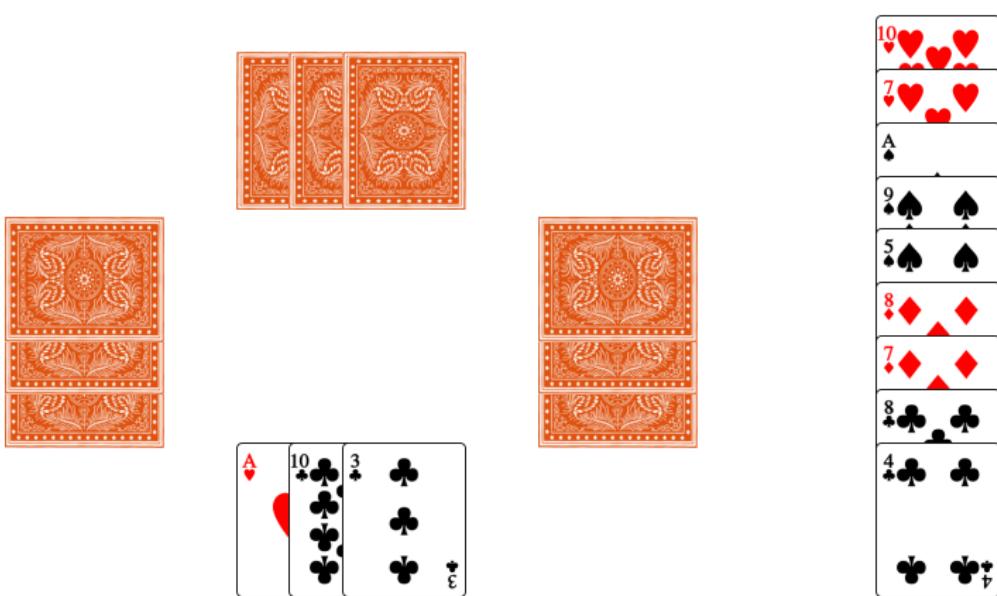
Hindsight Optimization: Idea

Repeat as long as **resources** (deliberation time, memory) allow:

- **Sample** outcomes of all actions
⇒ deterministic (classical) planning problem
- For each applicable action $a \in A(s_0)$,
compute **plan** in the sample that starts with a

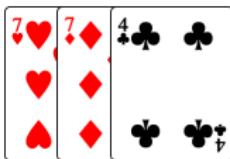
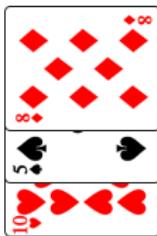
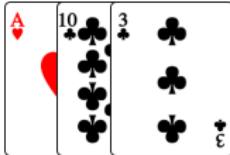
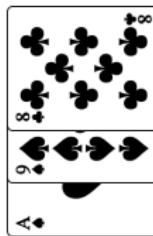
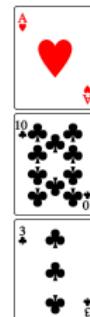
Execute the action with the **lowest average plan cost**

Hindsight Optimization: Example



South to play, three tricks to win, trump suit ♣

Hindsight Optimization: Example



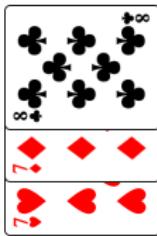
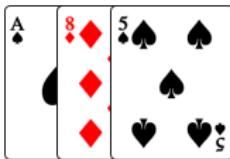
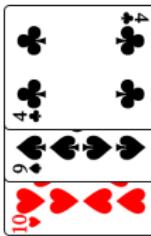
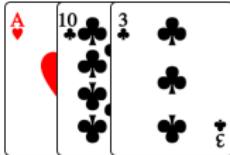
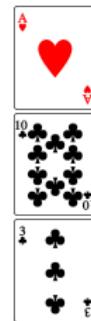
0% (0/1)

100% (1/1)

0% (0/1)

South to play, three tricks to win, trump suit ♣

Hindsight Optimization: Example



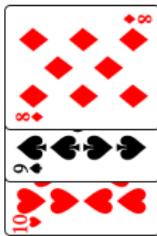
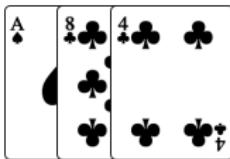
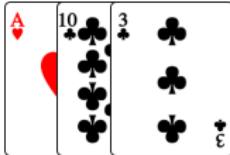
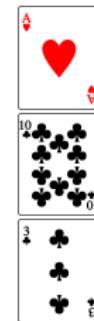
50% (1/2)

100% (2/2)

0% (0/2)

South to play, three tricks to win, trump suit ♣

Hindsight Optimization: Example



67% (2/3)

100% (3/3)

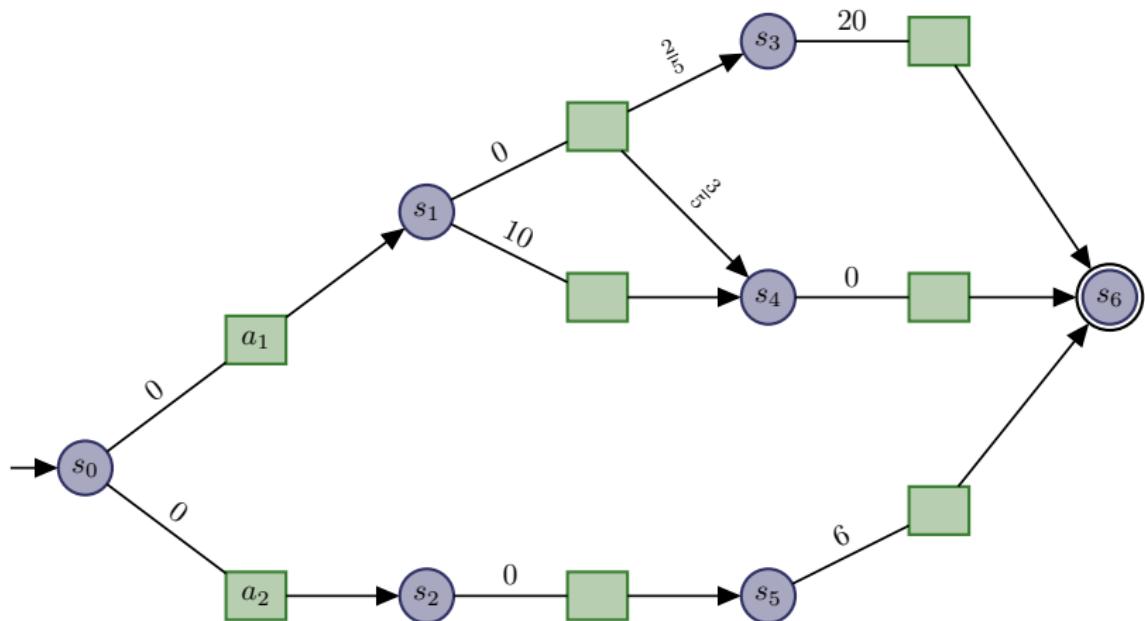
33% (1/3)

South to play, three tricks to win, trump suit ♣

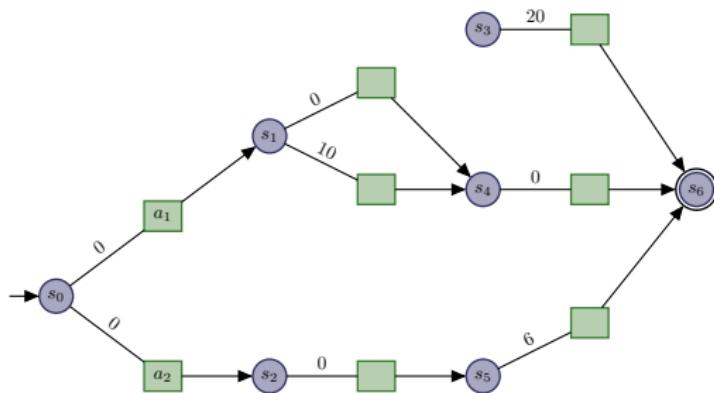
Hindsight Optimization: Evaluation

- HOP **well-suited** for some problems
- must be possible to **solve** sampled SSP **efficiently**:
 - domain-dependent knowledge (e.g., games like Bridge, Skat)
 - classical planner (FF-Hindsight, Yoon et. al, 2008)
- What about optimality **in the limit**?

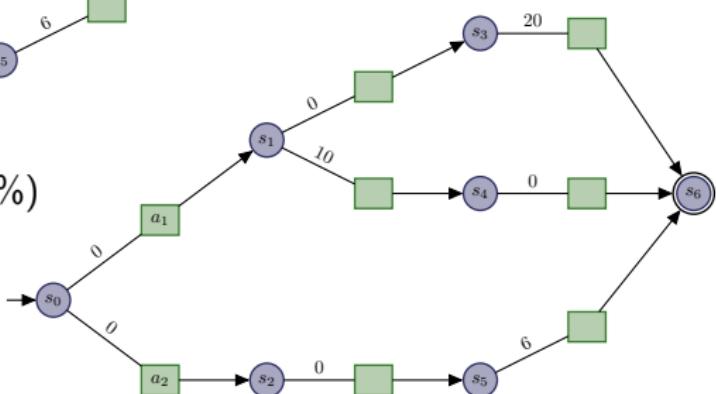
Hindsight Optimization: Non-optimality in the Limit



Hindsight Optimization: Non-optimality in the Limit

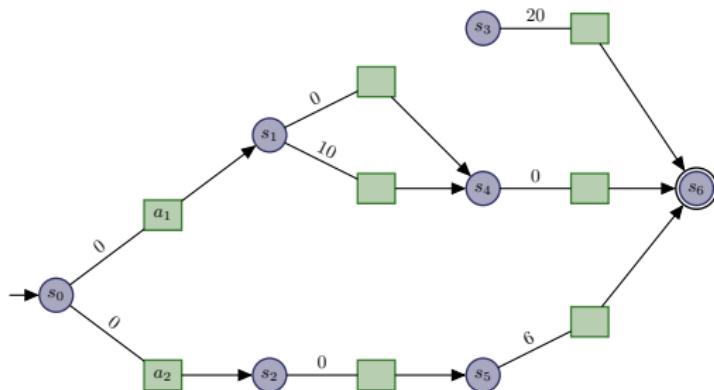


(sample probability: 60%)



(sample probability: 40%)

Hindsight Optimization: Non-optimality in the Limit

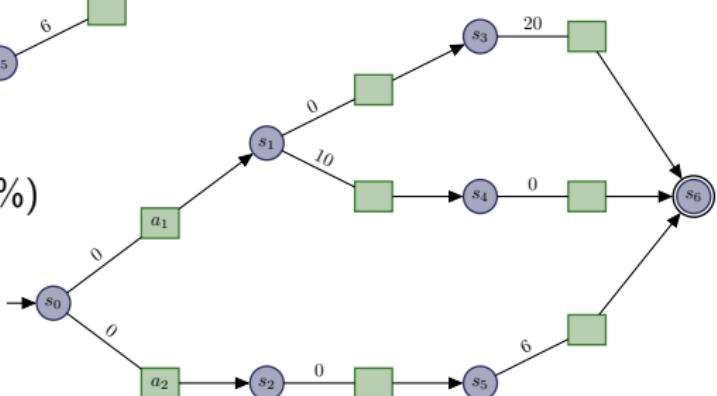


with $k \rightarrow \infty$:

$$\hat{Q}^k(s_0, a_1) \rightarrow 4$$

$$\hat{Q}^k(s_0, a_2) \rightarrow 6$$

(sample probability: 60%)



(sample probability: 40%)

Hindsight Optimization: Evaluation

- HOP **well-suited** for some problems
- must be possible to **solve** sampled MDP **efficiently**:
 - domain-dependent knowledge (e.g., games like Bridge, Skat)
 - classical planner (FF-Hindsight, Yoon et. al, 2008)
- What about optimality **in the limit**?
⇒ in general not optimal due to **assumption of clairvoyance**

Motivation
oo

Monte-Carlo Methods
oooooo

HOP
oooooo

Policy Simulation
●oo

Sparse Sampling
oooo

Summary
oo

Policy Simulation

Policy Simulation: Idea

Repeat as long as **resources** (deliberation time, memory) allow:

- For each applicable action $a \in A(s_0)$,
start a **run** from s_0 with a and then **follow a given policy** π
- Execute the action with the **lowest average simulation cost**

Avoids clairvoyance by **evaluation** of policy
through **simulation** of its execution.

Policy Simulation: Evaluation

- Base policy is **static**
- No mechanism to **overcome** the weaknesses of base policy
(if there are no weaknesses, we don't need policy simulation)
- **Suboptimal decisions** in simulation affect policy quality
- What about optimality **in the limit**?
⇒ in general not optimal **due to inability of policy to improve**

Motivation
oo

Monte-Carlo Methods
oooooo

HOP
oooooo

Policy Simulation
ooo

Sparse Sampling
●ooo

Summary
oo

Sparse Sampling

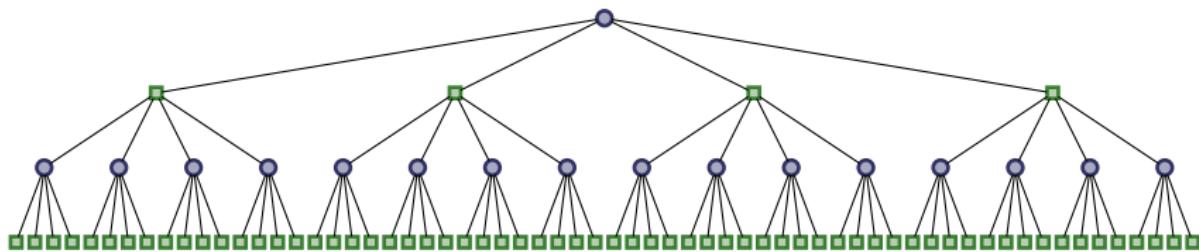
Sparse Sampling: Idea

Sparse Sampling (Kearns et al., 2002) approaches problem that **number of reachable states under a policy** can be too large

- Creates **search tree** up to a given **lookahead horizon**
- A constant number of outcomes is **sampled** for each state-action pair
- Outcomes that were not sampled are **ignored**
- **Near-optimal**: expected cost of resulting policy close to expected cost of optimal policy
- Runtime **independent** from the number of states

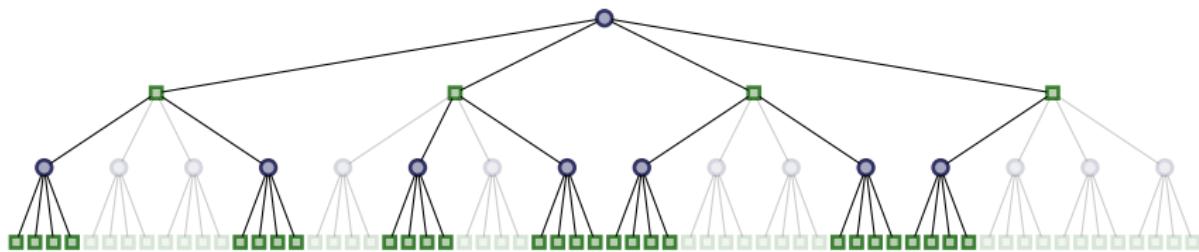
Sparse Sampling: Search Tree

Without Sparse Sampling



Sparse Sampling: Search Tree

With Sparse Sampling



Sparse Sampling: Problems

- Independent from number of states, but still **exponential in lookahead horizon**
- Constants that give number of outcomes and lookahead horizon **large** for good bounds on **near-optimality**
- Search time difficult to predict
- Same amount of sampling everywhere in the tree
⇒ resources are **wasted** in non-promising parts of the tree

Motivation
oo

Monte-Carlo Methods
oooooo

HOP
oooooo

Policy Simulation
ooo

Sparse Sampling
oooo

Summary
●○

Summary

Summary

- Monte-Carlo methods have a long history but no successful applications until 1990s
- Monte-Carlo methods use **sampling** and **backups** that average over sample results
- **Hindsight optimization** averages over plan cost in sampled determinization
- **Policy simulation** simulates the execution of a policy
- **Sparse sampling** considers only a fixed amount of outcomes
- All three methods are **not optimal** in the limit