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Monte-Carlo Methods: Brief History

1930s: first researchers experiment with Monte-Carlo methods
1998: Ginsberg's GIB player competes with Bridge experts
2002: Kearns et al. propose Sparse Sampling
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2002: Auer et al. present UCB1 action selection for
multi-armed bandits

2006: Coulom coins term Monte-Carlo Tree Search (MCTS)

2006: Kocsis and Szepesvari combine UCB1 and MCTS to
the famous MCTS variant, UCT

» 2007-2016: Constant progress of MCTS in Go culminates in
AlphaGo’s historical defeat of dan 9 player Lee Sedol
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G3.2 Monte-Carlo Methods
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Monte-Carlo Methods: |dea

» Summarize a broad family of algorithms

» Decisions are based on random samples
(Monte-Carlo sampling)

» Results of samples are aggregated by computing the average
(Monte-Carlo backups)

> Apart from that, algorithms can differ significantly
Careful: Many different definitions of MC methods in the literature
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Types of Random Samples

Random samples have in common that something is
drawn from a given probability distribution. Some examples:

> a determinization is sampled (Hindsight Optimization)
» runs under a fixed policy are simulated (Policy Simulation)
» considered outcomes are sampled (Sparse Sampling)

» runs under an evolving policy are simulated
(Monte-Carlo Tree Search)
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Reminder: Bellman Backups

Algorithms like Value Iterationor (L)RTDP use
the Bellman equation as an update procedure.

The i-th state-value estimate of state s, \7i(s), is computed with
Bellman backups as

Vis) = min | c(a) + ZS T(s,a,5') V7(s)

(Some algorithms use a heuristic if the state-value estimate on the
right hand side of the Bellman backup is undefined.)
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Monte-Carlo Backups

Monte-Carlo methods instead estimate state-values
by averaging over all samples.

Let N(s) be the number of samples for state s in the first i
algorithm iterations and let cost*(s) be the cost for s in the k-th
sample (cost“(s) = 0 if the k-th sample has no estimate for s).

The i-th state-value estimate of state s, V/(s), is computed with
Monte-Carlo backups as

vigey.— 1 i
Vi(s) = () 2 cost*(s).
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Monte-Carlo Backups: Properties

> no need to store cost(s) for k =1,..., i
it is possible to compute Monte-Carlo backups iteratively as

Vi(s) = Vi71(s) + (cost'(s) — V71(s))

1
Ni(s)
» no need to know SSP model for backups

> if s is a random variable, V/(s) converges to E[s]
due to the strong law of large numbers

» if s is not a random variable, this is not always the case
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G3.3 Hindsight Optimization
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Hindsight Optimization: ldea

Repeat as long as resources (deliberation time, memory) allow:

» Sample outcomes of all actions
= deterministic (classical) planning problem

> For each applicable action a € A(sp),
compute plan in the sample that starts with a

Execute the action with the lowest average plan cost
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Hindsight Optimization: Example

South to play, three tricks to win, trump suit &
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Hindsight Optimization: Example
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Hindsight Optimization: Example
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Hindsight Optimization: Example

Hindsight Optimization
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Hindsight Optimization: Evaluation

» HOP well-suited for some problems

» must be possible to solve sampled SSP efficiently:
> domain-dependent knowledge (e.g., games like Bridge, Skat)
> classical planner (FF-Hindsight, Yoon et. al, 2008)

» What about optimality in the limit?
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Hindsight Optimization: Non-optimality in the Limit
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Hindsight Optimization: Non-optimality in the Limit

with kK — oo:
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(sample probability: 40%)
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Hindsight Optimization: Evaluation

» HOP well-suited for some problems
» must be possible to solve sampled MDP efficiently:
» domain-dependent knowledge (e.g., games like Bridge, Skat)
> classical planner (FF-Hindsight, Yoon et. al, 2008)
» What about optimality in the limit?
= in general not optimal due to assumption of clairvoyance
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G3.4 Policy Simulation

G3. Asymptotically Suboptimal Monte-Carlo Methods

Policy Simulation: Idea

Repeat as long as resources (deliberation time, memory) allow:

» For each applicable action a € A(sp),
start a run from sp with a and then follow a given policy 7

» Execute the action with the lowest average simulation cost

Avoids clairvoyance by evaluation of policy
through simulation of its execution.

December 9, 2020
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Policy Simulation: Evaluation

> Base policy is static

» No mechansim to overcome the weaknesses of base policy
(if there are no weaknesses, we don't need policy simulation)

» Suboptimal decisions in simulation affect policy quality

» What about optimality in the limit?
= in general not optimal due to inability of policy to improve
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G3.5 Sparse Sampling

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization

December 9, 2020 26 /

Sparse Sampling

32

G3. Asymptotically Suboptimal Monte-Carlo Methods Sparse Sampling

Sparse Sampling: Idea

Sparse Sampling (Kearns et al., 2002) approaches problem that
number of reachable states under a policy can be too large

> Creates search tree up to a given lookahead horizon

> A constant number of outcomes is sampled
for each state-action pair

» Qutcomes that were not sampled are ignored

» Near-optimal: expected cost of resulting policy close to
expected cost of optimal policy

» Runtime independent from the number of states
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Sparse Sampling: Search Tree

Without Sparse Sampling
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Sparse Sampling: Search Tree

With Sparse Sampling
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Sparse Sampling: Problems

» Independent from number of states, but still
exponential in lookahead horizon

» Constants that give number of outcomes and lookahead
horizon large for good bounds on near-optimality

» Search time difficult to predict

» Same amount of sampling everywhere in the tree
= resources are wasted in non-promising parts of the tree

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 9, 2020

30 /

Sparse Sampling

32

G3. Asymptotically Suboptimal Monte-Carlo Methods Summary

G3.6 Summary

M. Helmert, G. Roger (Universitat Basel) Planning and Optimization December 9, 2020 31 /32

G3. Asymptotically Suboptimal Monte-Carlo Methods

Summary

» Monte-Carlo methods have a long history
but no successful applications until 1990s

» Monte-Carlo methods use sampling and
backups that average over sample results

» Hindsight optimization averages over plan cost
in sampled determinization

» Policy simulation simulates the execution of a policy

v

Sparse sampling considers only a fixed amount of outcomes

» All three methods are not optimal in the limit
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