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G3. Asymptotically Suboptimal Monte-Carlo Methods Motivation

Monte-Carlo Methods: Brief History

I 1930s: first researchers experiment with Monte-Carlo methods

I 1998: Ginsberg’s GIB player competes with Bridge experts

I 2002: Kearns et al. propose Sparse Sampling

I 2002: Auer et al. present UCB1 action selection for
multi-armed bandits

I 2006: Coulom coins term Monte-Carlo Tree Search (MCTS)

I 2006: Kocsis and Szepesvári combine UCB1 and MCTS to
the famous MCTS variant, UCT

I 2007–2016: Constant progress of MCTS in Go culminates in
AlphaGo’s historical defeat of dan 9 player Lee Sedol
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Monte-Carlo Methods: Idea

I Summarize a broad family of algorithms

I Decisions are based on random samples
(Monte-Carlo sampling)

I Results of samples are aggregated by computing the average
(Monte-Carlo backups)

I Apart from that, algorithms can differ significantly

Careful: Many different definitions of MC methods in the literature
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Types of Random Samples

Random samples have in common that something is
drawn from a given probability distribution. Some examples:

I a determinization is sampled (Hindsight Optimization)

I runs under a fixed policy are simulated (Policy Simulation)

I considered outcomes are sampled (Sparse Sampling)

I runs under an evolving policy are simulated
(Monte-Carlo Tree Search)
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Reminder: Bellman Backups

Algorithms like Value Iterationor (L)RTDP use
the Bellman equation as an update procedure.

The i-th state-value estimate of state s, V̂ i (s), is computed with
Bellman backups as

V̂ i (s) := min
a∈A(s)

(
c(a) +

∑
s′∈S

T (s, a, s ′) · V̂ i−1(s ′)

)
.

(Some algorithms use a heuristic if the state-value estimate on the
right hand side of the Bellman backup is undefined.)
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Monte-Carlo Backups

Monte-Carlo methods instead estimate state-values
by averaging over all samples.

Let N i (s) be the number of samples for state s in the first i
algorithm iterations and let costk(s) be the cost for s in the k-th
sample (costk(s) = 0 if the k-th sample has no estimate for s).

The i-th state-value estimate of state s, V̂ i (s), is computed with
Monte-Carlo backups as

V̂ i (s) :=
1

N i (s)
·

i∑
k=1

costk(s).
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Monte-Carlo Backups: Properties

I no need to store costk(s) for k = 1, . . . , i :
it is possible to compute Monte-Carlo backups iteratively as

V̂ i (s) := V̂ i−1(s) +
1

N i (s)
(costi (s)− V̂ i−1(s))

I no need to know SSP model for backups

I if s is a random variable, V̂ i (s) converges to E[s]
due to the strong law of large numbers

I if s is not a random variable, this is not always the case
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G3.3 Hindsight Optimization
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G3. Asymptotically Suboptimal Monte-Carlo Methods Hindsight Optimization

Hindsight Optimization: Idea

Repeat as long as resources (deliberation time, memory) allow:

I Sample outcomes of all actions
⇒ deterministic (classical) planning problem

I For each applicable action a ∈ A(s0),
compute plan in the sample that starts with a

Execute the action with the lowest average plan cost
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Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣
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100% (2/2)

0% (0/2)

67% (2/3)

100% (3/3)

33% (1/3)
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Hindsight Optimization: Evaluation

I HOP well-suited for some problems
I must be possible to solve sampled SSP efficiently:

I domain-dependent knowledge (e.g., games like Bridge, Skat)
I classical planner (FF-Hindsight, Yoon et. al, 2008)

I What about optimality in the limit?

⇒ often not optimal due to assumption of clairvoyance
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Hindsight Optimization: Non-optimality in the Limit
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with k →∞:

Q̂k(s0, a1)→ 4

Q̂k(s0, a2)→ 6
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Hindsight Optimization: Evaluation

I HOP well-suited for some problems
I must be possible to solve sampled MDP efficiently:

I domain-dependent knowledge (e.g., games like Bridge, Skat)
I classical planner (FF-Hindsight, Yoon et. al, 2008)

I What about optimality in the limit?
⇒ in general not optimal due to assumption of clairvoyance
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G3.4 Policy Simulation
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Policy Simulation: Idea

Repeat as long as resources (deliberation time, memory) allow:

I For each applicable action a ∈ A(s0),
start a run from s0 with a and then follow a given policy π

I Execute the action with the lowest average simulation cost

Avoids clairvoyance by evaluation of policy
through simulation of its execution.
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Policy Simulation: Evaluation

I Base policy is static

I No mechansim to overcome the weaknesses of base policy
(if there are no weaknesses, we don’t need policy simulation)

I Suboptimal decisions in simulation affect policy quality

I What about optimality in the limit?
⇒ in general not optimal due to inability of policy to improve
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G3.5 Sparse Sampling
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Sparse Sampling: Idea

Sparse Sampling (Kearns et al., 2002) approaches problem that
number of reachable states under a policy can be too large

I Creates search tree up to a given lookahead horizon

I A constant number of outcomes is sampled
for each state-action pair

I Outcomes that were not sampled are ignored

I Near-optimal: expected cost of resulting policy close to
expected cost of optimal policy

I Runtime independent from the number of states
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Sparse Sampling: Search Tree

Without Sparse Sampling
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Sparse Sampling: Search Tree

With Sparse Sampling
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Sparse Sampling: Problems

I Independent from number of states, but still
exponential in lookahead horizon

I Constants that give number of outcomes and lookahead
horizon large for good bounds on near-optimality

I Search time difficult to predict

I Same amount of sampling everywhere in the tree
⇒ resources are wasted in non-promising parts of the tree
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G3.6 Summary
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G3. Asymptotically Suboptimal Monte-Carlo Methods Summary

Summary

I Monte-Carlo methods have a long history
but no successful applications until 1990s

I Monte-Carlo methods use sampling and
backups that average over sample results

I Hindsight optimization averages over plan cost
in sampled determinization

I Policy simulation simulates the execution of a policy

I Sparse sampling considers only a fixed amount of outcomes

I All three methods are not optimal in the limit
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