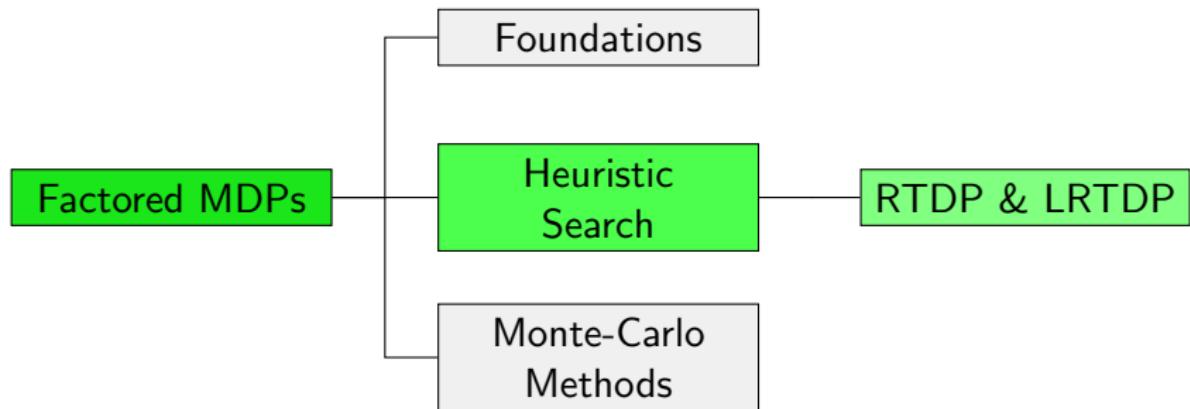

Planning and Optimization

G2. Real-time Dynamic Programming


Malte Helmert and Gabriele Röger

Universität Basel

Content of this Course

Content of this Course: Factored MDPs

Motivation

●○

RTDP

○○○○○

LRTDP

○○○○○○○○○○

Summary

○○

Motivation

Motivation: Real-time Dynamic Programming

- Asynchronous VI maintains table with state-value estimates for all states ...
- ... and has to update all states repeatedly.

Motivation: Real-time Dynamic Programming

- Asynchronous VI maintains table with state-value estimates for all states ...
- ... and has to update all states repeatedly.
- Real-time Dynamic Programming (RTDP) generates **hash map** with state-value estimates of **relevant states**
- uses **admissible heuristic** to achieve convergence albeit not updating all states
- Proposed by Barto, Bradtke & Singh (1995)

Motivation
oo

RTDP
●ooooo

LRTDP
oooooooooooo

Summary
oo

Real-time Dynamic Programming

Real-time Dynamic Programming

- RTDP updates only states **relevant** to the agent
- Originally motivated from agent that **acts** in environment by following **greedy policy** w.r.t. current state-value estimates.
- Performs **Bellman backup** in each encountered state
- Uses **admissible heuristic** for states not updated before

Trial-based Real-time Dynamic Programming

- We consider the **offline** version here.
⇒ Interaction with environment is **simulated** in **trials**.
- In real world, outcome of action application cannot be **chosen**.
⇒ In simulation, outcomes are **sampled** according to probabilities.

Real-time Dynamic Programming

RTDP for SSP $\mathcal{T} = \langle S, A, c, T, s_0, S_* \rangle$

while more trials required:

$s := s_0$

while $s \notin S_*$:

$\hat{V}(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}(s') \right)$

$s := \text{succ}(s, a_{\hat{V}}(s))$

Note: $\hat{V}(s)$ is maintained as a hash table of states. On the right hand side of line 4 or 5, if a state s is not in \hat{V} , $h(s)$ is used.

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	\uparrow 4.00	3.00	4.00	1.00
3	\uparrow 5.00	4.00	3.00	2.00
2	\uparrow 6.00	5.00	4.00	3.00
1	\bullet s_0 \uparrow 7.00	6.00	5.00	4.00
	1	2	3	4

Start of 1st trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	\uparrow 4.00	3.00	4.00	1.00
3	\uparrow 5.00	4.00	3.00	2.00
2	\uparrow 6.00	5.00	4.00	3.00
1	\bullet s_0 \uparrow 7.00	6.00	5.00	4.00
	1	2	3	4

Step 1

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	\uparrow 4.00	3.00	4.00	1.00
3	\uparrow 5.00	4.00	3.00	2.00
2	\uparrow 6.60	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00
	1	2	3	4

Step 2

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	\uparrow 4.00	3.00	4.00	1.00
3	\uparrow 5.00	4.00	3.00	2.00
2	\uparrow 6.96	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00

1 2 3 4

Step 3

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	\uparrow 4.00	3.00	4.00	1.00
3	\uparrow 5.00	4.00	3.00	2.00
2	\uparrow 7.18	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00

1 2 3 4

Step 4

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	\uparrow 4.00	3.00	4.00	1.00
3	\bullet \uparrow 5.60	4.00	3.00	2.00
2	\uparrow 6.96	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00
	1	2	3	4

Step 5

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	↑ 4.60	3.00	4.00	1.00
3	↑ 5.60	4.00	3.00	2.00
2	↑ 6.96	5.00	4.00	3.00
1	↑ s_0 7.00	6.00	5.00	4.00

Step 6

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	↑ 4.96	3.00	4.00	1.00
3	↑ 5.60	4.00	3.00	2.00
2	↑ 6.96	5.00	4.00	3.00
1	↑ s_0 7.00	6.00	5.00	4.00

Step 7

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	● 5.18	3.00	4.00	1.00
3	↑ 5.60	4.00	3.00	2.00
2	↑ 6.96	5.00	4.00	3.00
1	↑ s_0 7.00	6.00	5.00	4.00

Step 8

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 3.00	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	↑ 5.31	3.00	4.00	1.00
3	↑ 5.60	4.00	3.00	2.00
2	↑ 6.96	5.00	4.00	3.00
1	↑ s_0 7.00	6.00	5.00	4.00

Step 9

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	3.60	2.00	1.00
4	5.31	3.00	4.00
3	5.60	4.00	3.00
2	6.96	5.00	4.00
1	$\uparrow s_0$ 7.00	6.00	5.00
	1	2	3

Step 10

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	3.96	2.00	1.00
4	5.31	3.00	4.00
3	5.60	4.00	3.00
2	6.96	5.00	4.00
1	$\uparrow s_0$ 7.00	6.00	5.00
	1	2	3

Step 11

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*	
5	\Rightarrow 4.18	\Rightarrow 2.00	\Rightarrow 1.00	0.00
4	\uparrow 5.31	3.00	4.00	1.00
3	\uparrow 5.60	4.00	3.00	2.00
2	\uparrow 6.96	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00
	1	2	3	4

Step 12

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*	
5	\Rightarrow 4.31	\Rightarrow 2.00	\Rightarrow 1.00	0.00
4	\uparrow 5.31	3.00	4.00	1.00
3	\uparrow 5.60	4.00	3.00	2.00
2	\uparrow 6.96	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00
	1	2	3	4

Step 13

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	\Rightarrow 4.31	\Rightarrow 2.00	\Rightarrow 1.00
4	\uparrow 5.31	3.00	4.00
3	\uparrow 5.60	4.00	3.00
2	\uparrow 6.96	5.00	4.00
1	\uparrow^{s_0} 7.00	6.00	5.00
	1	2	3

Step 14

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

	\Rightarrow 4.31	\Rightarrow 2.00	\Rightarrow 1.00	s_* 0.00
5				
4	\uparrow 5.31	3.00	4.00	1.00
3	\uparrow 5.60	4.00	3.00	2.00
2	\uparrow 6.96	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00
	1	2	3	4

Step 15

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	\Rightarrow 4.31	\Rightarrow 2.00	\Rightarrow 1.00	0.00
4	\uparrow 5.31	3.00	4.00	1.00
3	\uparrow 5.60	4.00	3.00	2.00
2	\uparrow 6.96	5.00	4.00	3.00
1	\uparrow^{s_0} 7.00	6.00	5.00	4.00
	1	2	3	4

Step 16

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

				s_*
5	4.31	\Rightarrow 2.00	\Rightarrow 1.00	0.00
4	5.31	\uparrow 3.00	4.00	1.00
3	5.60	\uparrow 4.00	3.00	2.00
2	6.96	\uparrow 5.00	4.00	3.00
1	s_0 7.00	\uparrow 6.00	5.00	4.00
	1	2	3	4

Start of 2nd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	4.31	\Rightarrow 2.00	\Rightarrow 1.00
4	5.31	\uparrow 3.00	4.00
3	5.60	\uparrow 4.00	3.00
2	6.96	\uparrow 5.96	4.00
1	\Rightarrow^{s_0} 7.00	\uparrow 6.00	5.00
	1	2	3
			4

End of 2nd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	4.31	2.00	1.00
4	5.31	3.00	4.00
3	5.60	4.00	\Rightarrow 3.00
2	6.96	5.96	\uparrow 4.00
1	$\bullet \Rightarrow s_0$ 7.00	\Rightarrow 6.00	\uparrow 5.00
	1	2	3 4

Start of 3rd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	4.31	2.00	1.00
4	5.31	3.00	4.00
3	5.60	4.00	\Rightarrow 3.00
2	6.96	5.96	\uparrow 4.00
1	\Rightarrow^{s_0} 7.00	\Rightarrow 6.00	\uparrow 5.00
	1	2	3 4

End of 3rd trial

Used heuristic: shortest path assuming agent **never gets stuck**

Example: RTDP

			s_*
5	4.31	\Rightarrow 2.00	\Rightarrow 1.00
4	5.31	\uparrow 3.00	7.92
3	6.18	\uparrow 4.00	5.00
2	7.77	\uparrow 6.50	6.00
1	\Rightarrow^{s_0} 8.50	\uparrow 7.50	7.00
	1	2	3

End of 16th trial

Used heuristic: shortest path assuming agent **never gets stuck**

RTDP: Theoretical Properties

Theorem

Using an admissible heuristic, RTDP converges to an optimal solution without (necessarily) computing state-value estimates for all states.

Proof omitted.

Labeled Real-time Dynamic Programming

Motivation

Issues of RTDP:

- States are still updated after **state-value estimate** has **converged**.
- No **termination criterion** \Rightarrow algorithm is underspecified

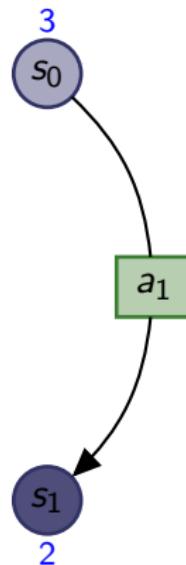
Most popular algorithm to overcome these shortcomings:

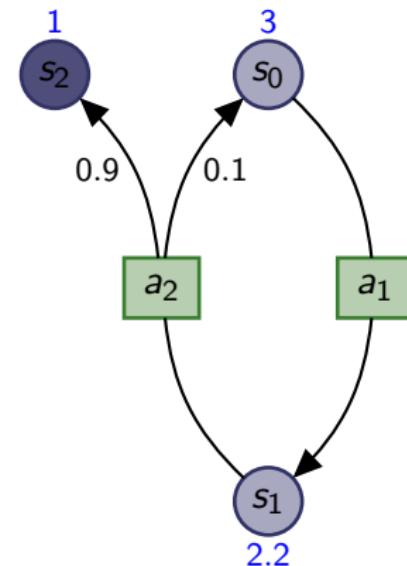
Labeled RTDP (Bonet & Geffner, 2003)

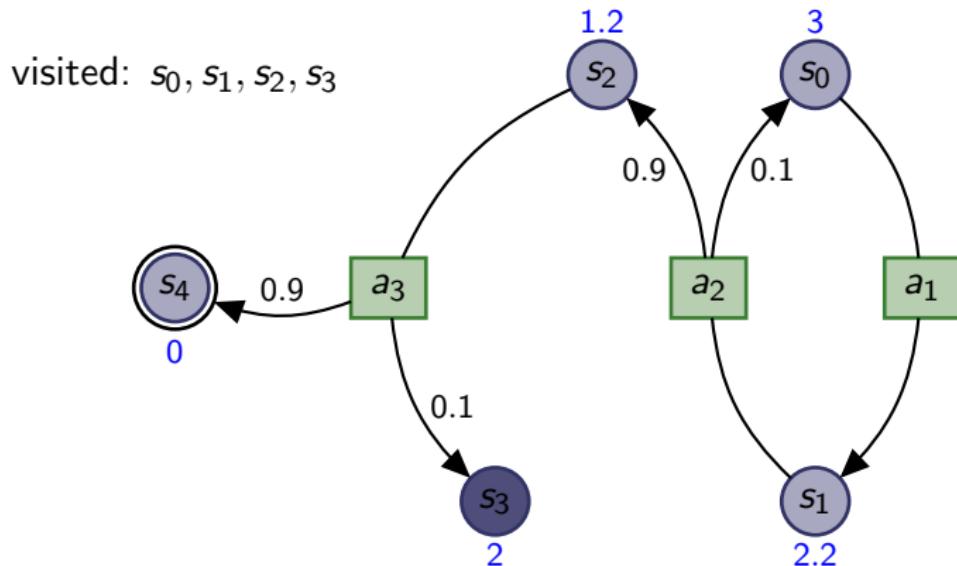
Labeled RTDP: Idea

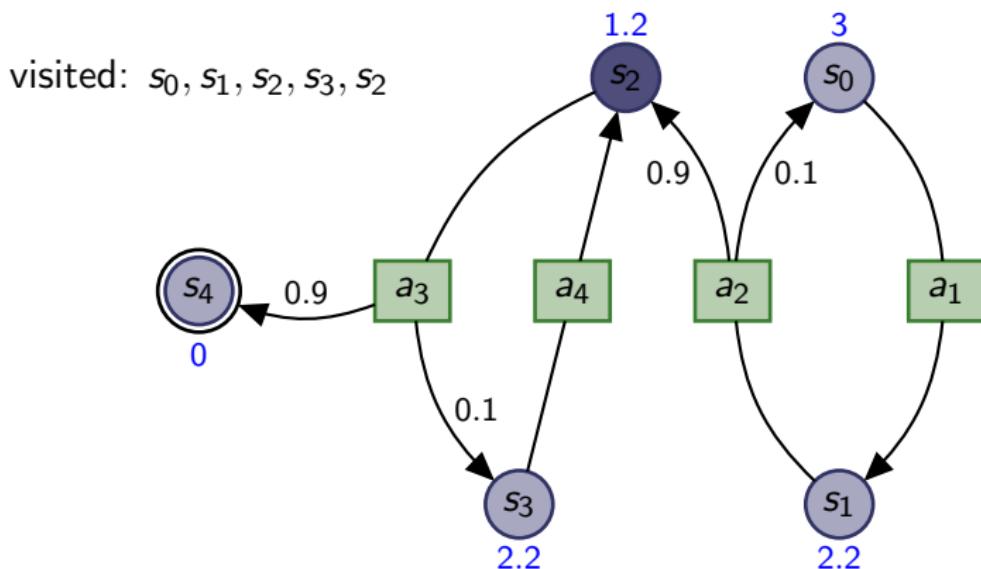
The main idea of Labeled RTDP (LRTDP) is to
label states as solved

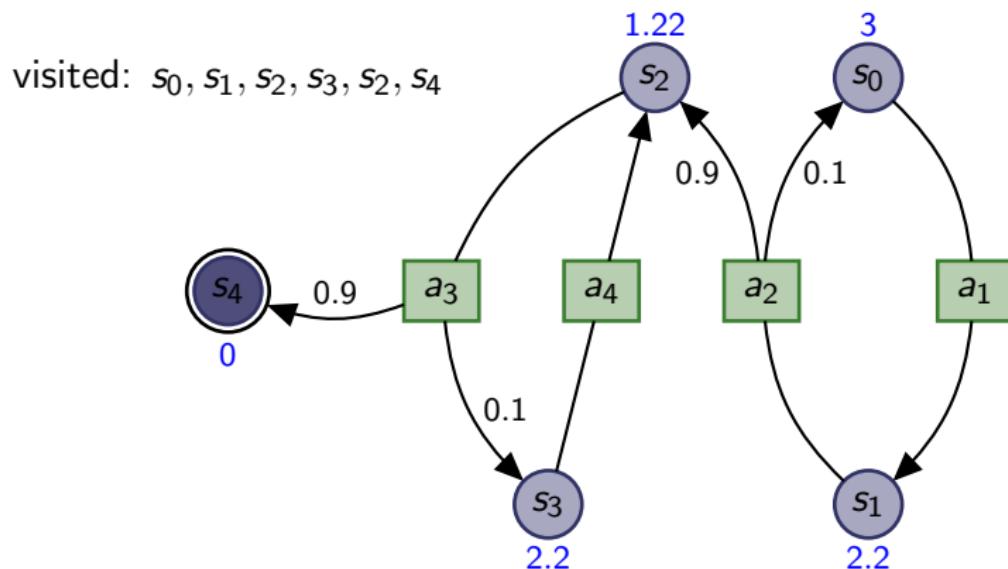
- Each **trial terminates** when a solved state is encountered
 ⇒ solved states no longer updated
- **LRTDP terminates** when the initial state is labeled as solved
 ⇒ well-defined termination criterion

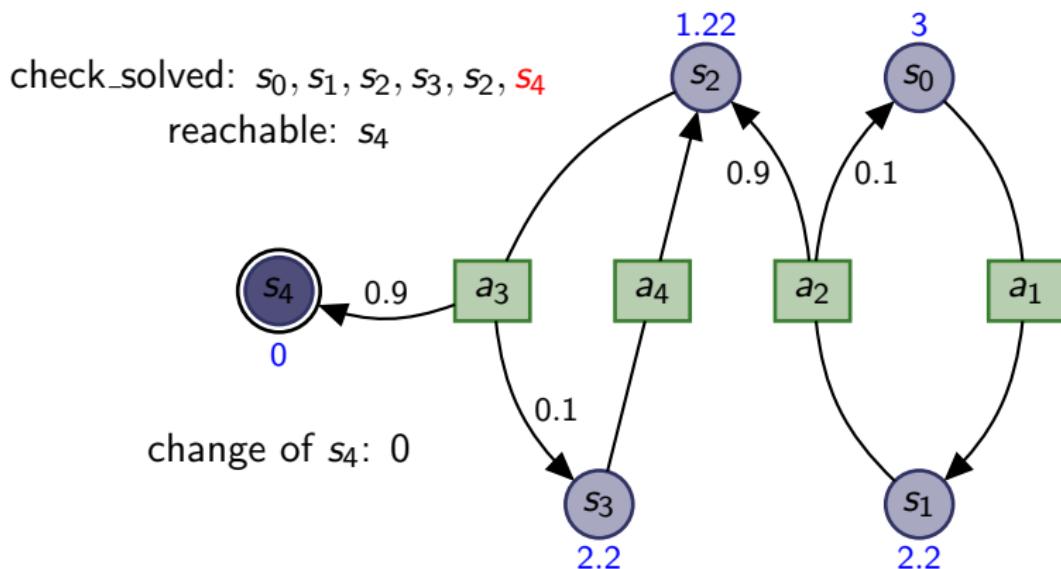

Solved States in SSPs

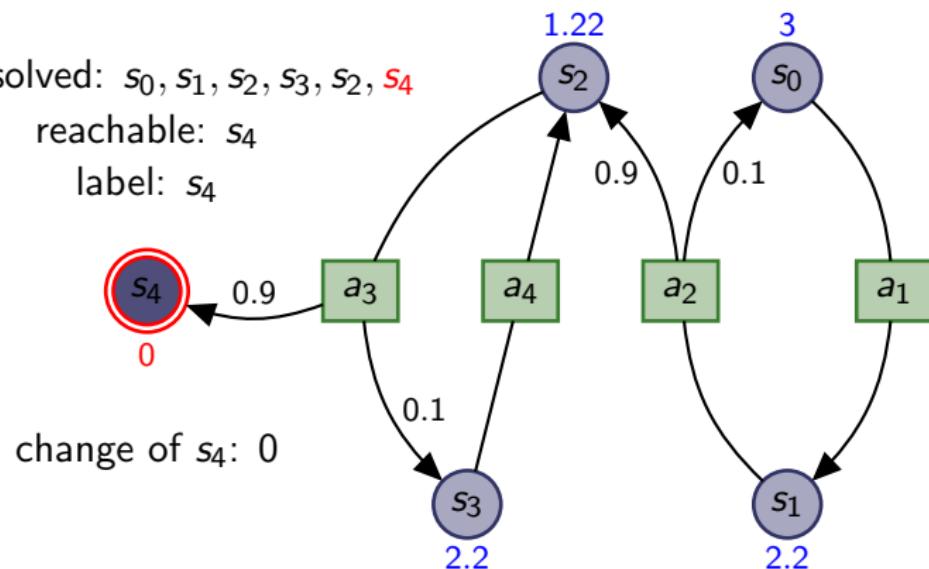

- States are solved if the state-value estimate **changes only little**
- In presence of **cycles**, all states in a **strongly connected component** (SCC) are considered simultaneously
- Labeled RTDP uses sub-algorithm **CheckSolved** to check whether all states in a SCC are solved


CheckSolved Procedure


- CheckSolved is called on all states that were encountered in a trial in **reverse order**.
- CheckSolved checks how much the state-value estimates of unlabeled states reachable under the greedy policy would change with another update.
- If this change is below some constant ε for all these states then they are all labeled as solved.
- Otherwise, CheckSolved performs an additional backup for the encountered states, hence improving the state value estimate for at least one of them.


Labeled RTDP: Example ($\varepsilon = 0.005$)visited: s_0

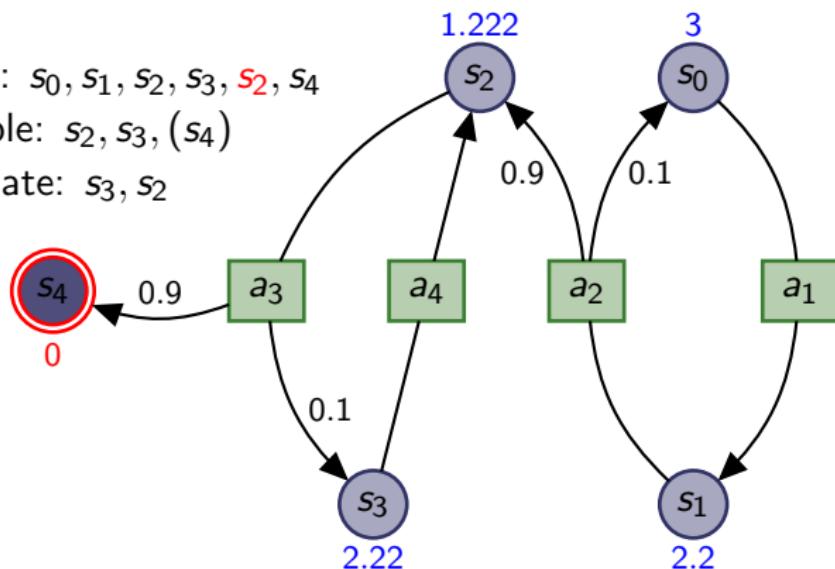

Labeled RTDP: Example ($\varepsilon = 0.005$)visited: s_0, s_1


Labeled RTDP: Example ($\varepsilon = 0.005$)visited: s_0, s_1, s_2

Labeled RTDP: Example ($\varepsilon = 0.005$)

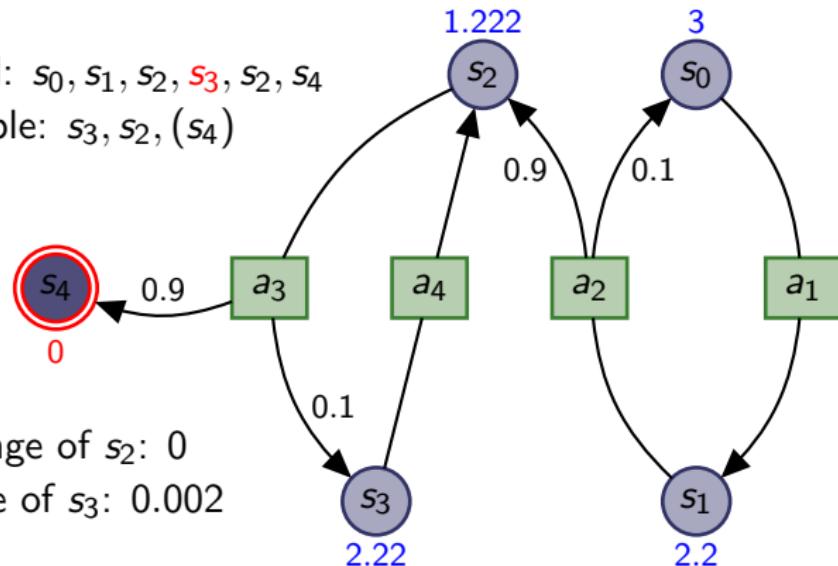
Labeled RTDP: Example ($\varepsilon = 0.005$)

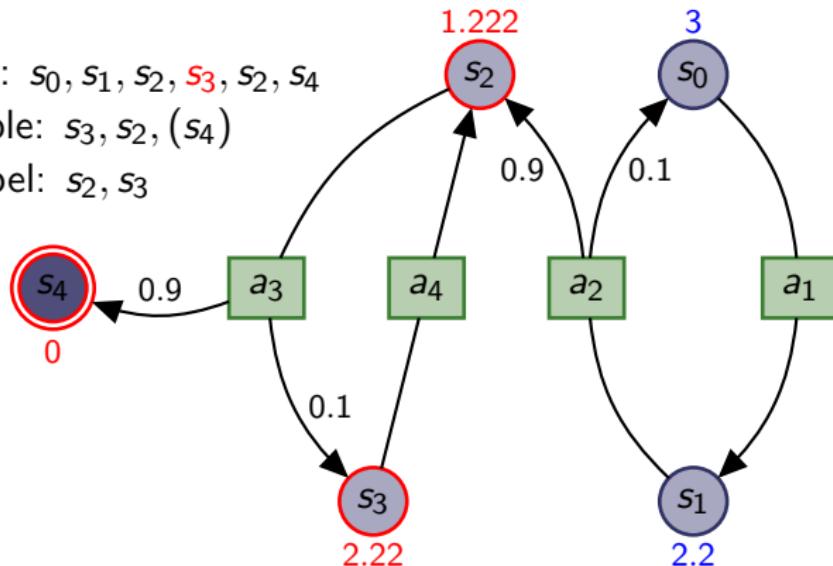

Labeled RTDP: Example ($\varepsilon = 0.005$)


Labeled RTDP: Example ($\varepsilon = 0.005$)

Labeled RTDP: Example ($\varepsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: s_4 label: s_4

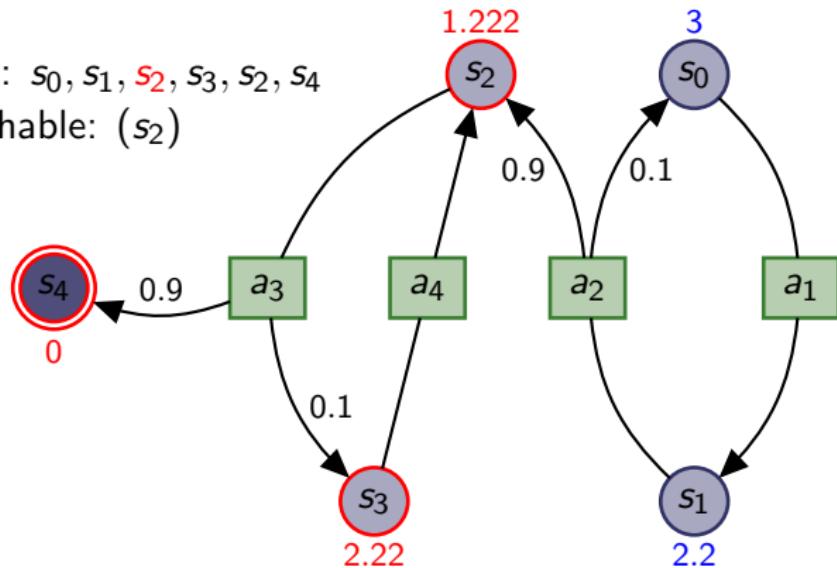
Labeled RTDP: Example ($\varepsilon = 0.005$)


check_solved: s_0, s_1, s_2, s_3, s_4
reachable: $s_2, s_3, (s_4)$

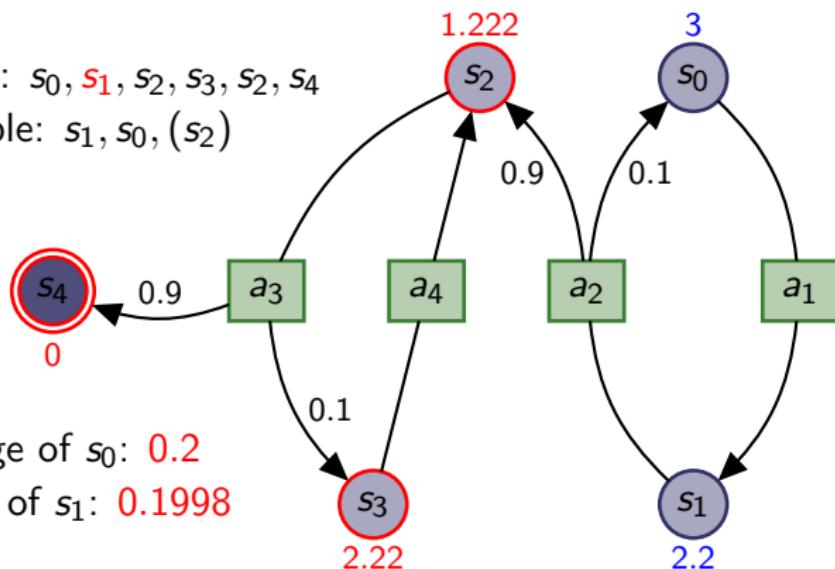


Labeled RTDP: Example ($\varepsilon = 0.005$)check_solved: s_0, s_1, s_2, s_3, s_4 reachable: $s_2, s_3, (s_4)$ update: s_3, s_2

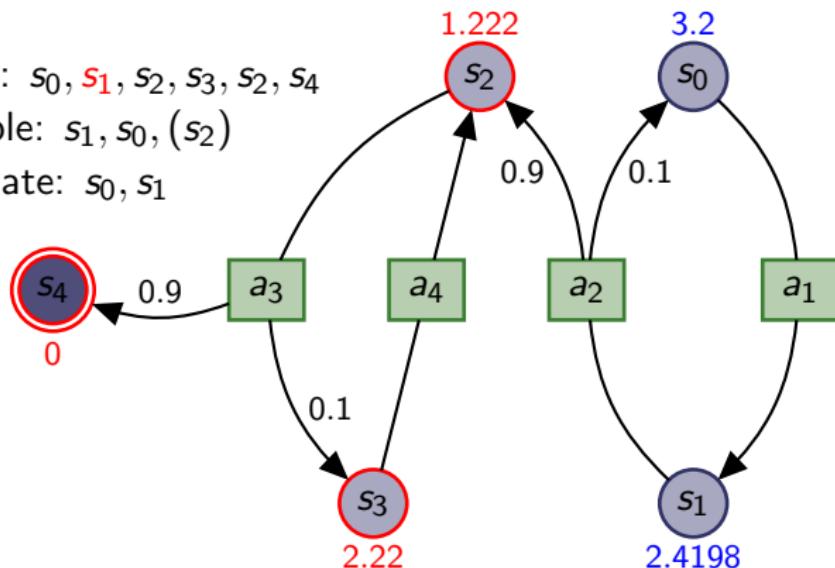
Labeled RTDP: Example ($\varepsilon = 0.005$)


check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
reachable: $s_3, s_2, (s_4)$

Labeled RTDP: Example ($\varepsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: $s_3, s_2, (s_4)$ label: s_2, s_3

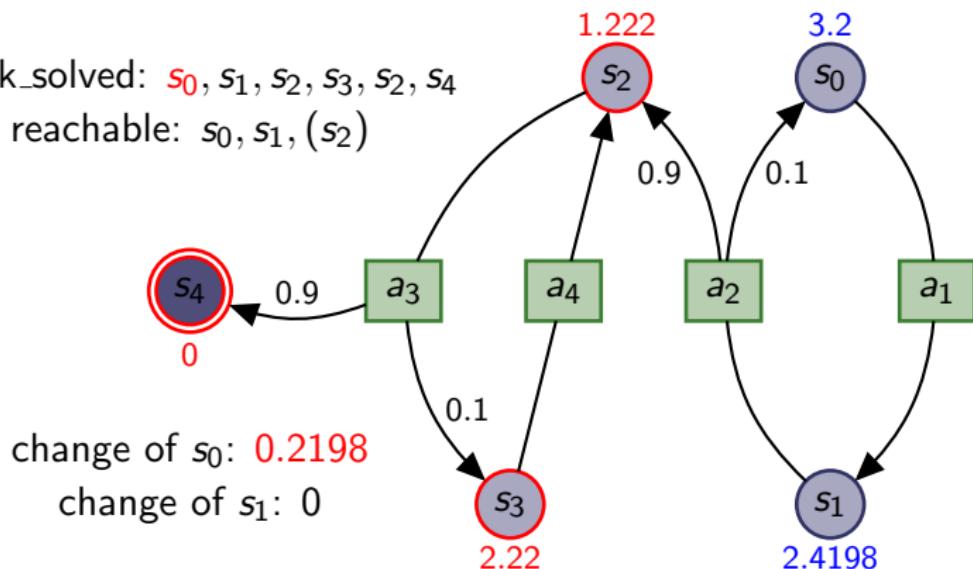

Labeled RTDP: Example ($\varepsilon = 0.005$)

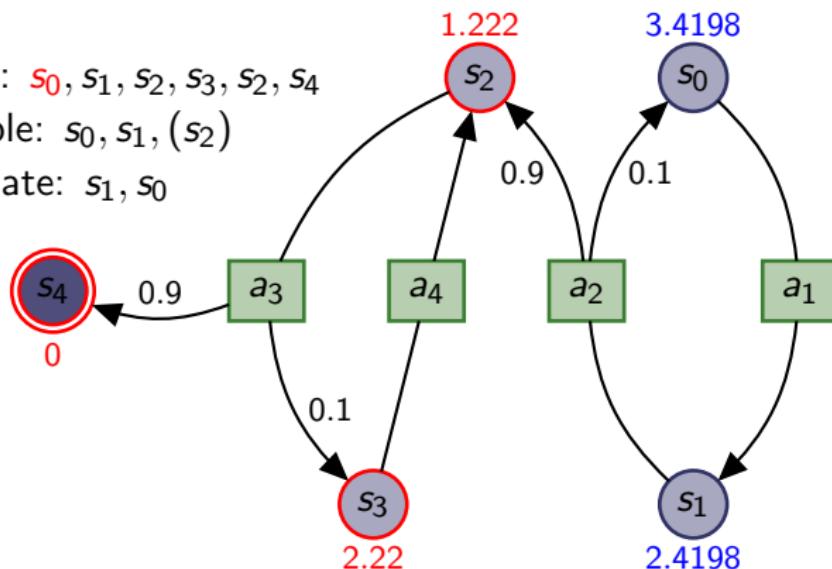
check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
reachable: (s_2)



Labeled RTDP: Example ($\varepsilon = 0.005$)

check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
reachable: $s_1, s_0, (s_2)$




change of s_0 : 0.2
change of s_1 : 0.1998

Labeled RTDP: Example ($\varepsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: $s_1, s_0, (s_2)$ update: s_0, s_1

Labeled RTDP: Example ($\varepsilon = 0.005$)

check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$
reachable: $s_0, s_1, (s_2)$

Labeled RTDP: Example ($\varepsilon = 0.005$)check_solved: $s_0, s_1, s_2, s_3, s_2, s_4$ reachable: $s_0, s_1, (s_2)$ update: s_1, s_0

Labeled Real-time Dynamic Programming

Labeled RTDP for SSP \mathcal{T}

while s_0 is not solved:
 visit(s_0)

visit state s

if s is solved or $s \in S_*$:

return

$$\hat{V}(s) := \min_{a \in A(s)} \left(c(a) + \sum_{s' \in S} T(s, a, s') \cdot \hat{V}(s') \right)$$

$s' \stackrel{\sim}{:} \text{succ}(s, a_{\hat{V}}(s))$

 visit(s')

 check_solved(s)

$\hat{V}(s)$ is maintained as a hash table of states. On the right hand side of line 3 or 4 in visit(s), if a state s is not in \hat{V} , $h(s)$ is used.

Labeled RTDP: CheckSolved

check_solved for state s

set allsolved := true, open, closed := stack

if s not labeled **then** push s to open

while open is not empty:

 pop s' from open and insert it into closed

if change of $s' > \varepsilon$

 allsolved := false

else push all $s'' \in \text{succ}(s', a_V(s'))$ to open that are
 not labeled and not in open or closed

if allsolved **then** label all states in closed as solved

else

while closed is not empty:

 pop s' from closed and update its state value

Labeled RTDP: Theoretical Properties

Theorem

Using an admissible heuristic, Labeled RTDP converges to an optimal solution without (necessarily) computing state-value estimates for all states.

Proof omitted.

Experimental Results [Bonet and Geffner, ICAPS 2003]

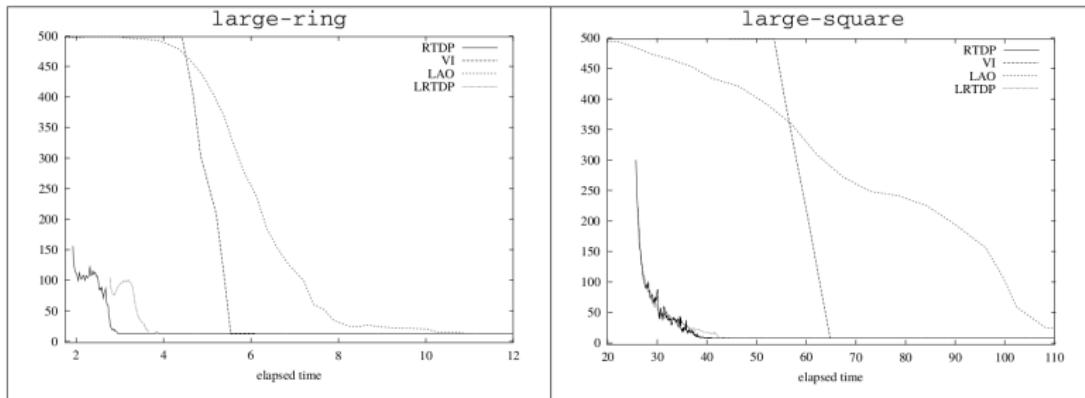


Figure 3: Quality profiles: Average cost to the goal vs. time for RTDP, VI, ILAO* and LRTDP with the heuristic $h = 0$ and $\epsilon = 10^{-3}$.

algorithm	small-b	large-b	h-track	small-r	large-r	small-s	large-s	small-y	large-y
VI($h = 0$)	1.101	4.045	15.451	0.662	5.435	5.896	78.720	16.418	61.773
ILAO* $(h = 0)$	2.568	11.794	43.591	1.114	11.166	12.212	250.739	57.488	182.649
LRTDP($h = 0$)	0.885	7.116	15.591	0.431	4.275	3.238	49.312	9.393	34.100

Table 2: Convergence time in seconds for the different algorithms with initial value function $h = 0$ and $\epsilon = 10^{-3}$. Times for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

algorithm	small-b	large-b	h-track	small-r	large-r	small-s	large-s	small-y	large-y
VI(h_{min})	1.317	4.093	12.693	0.737	5.932	6.855	102.946	17.636	66.253
ILAO* (h_{min})	1.161	2.910	11.401	0.309	3.514	0.387	1.055	0.692	1.367
LRTDP(h_{min})	0.521	2.660	7.944	0.187	1.599	0.259	0.653	0.336	0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function $h = h_{min}$ and $\epsilon = 10^{-3}$. Times for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

Motivation
oo

RTDP
oooooo

LRTDP
oooooooooooo

Summary
●○

Summary

Summary

- Real-time Dynamic Programming is an **optimal algorithm** for SSPs ...
- ... that backups only a **subset of states** ...
- ... without generating an explicit representation of the state-space.
- Labeled RTDP labels states as **solved** to stop updating converged states ...
- ... and speeds up convergence with additional backups in **reverse order**.