Planning and Optimization

G2. Real-time Dynamic Programming

Malte Helmert and Gabriele Roger

Universitat Basel

Content of this Course

Foundations |

Logic |

—| Classical I—

Heuristics |

LT T 1

Constraints |

D Explicit MDPs |

Content of this Course: Factored MDPs

—{ Foundations ‘

Heuristic
CecwawPs] | | e | [Fropa erop

Monte-Carlo
Methods

Motivation
®0

Motivation

Motivation

oe

Motivation: Real-time Dynamic Programming

m Asynchronous VI maintains table with
state-value estimates for all states ...

m ... and has to update all states repeatedly.

Motivation

oe

Motivation: Real-time Dynamic Programming

m Asynchronous VI maintains table with
state-value estimates for all states ...

m ... and has to update all states repeatedly.

m Real-time Dynamic Programming (RTDP) generates hash
map with state-value estimates of relevant states

m uses admissible heuristic to achieve convergence albeit not
updating all states

m Proposed by Barto, Bradtke & Singh (1995)

RTDP
[Jelelelolo)

Real-time Dynamic Programming

Motivation RTDP
0®0000

Real-time Dynamic Programming

RTDP updates only states relevant to the agent

Originally motivated from agent that acts in environment
by following greedy policy w.r.t. current state-value estimates.

Performs Bellman backup in each encountered state

Uses admissible heuristic for states not updated before

Motivation RTDP
00000

Trial-based Real-time Dynamic Programming

m We consider the offline version here.
= Interaction with environment is simulated in trials.

m In real world, outcome of action application cannot be chosen.
= In simulation, outcomes are sampled according to
probabilities.

Motivation RTDP

Summary
000®00 0000000000

Real-time Dynamic Programming

RTDP for SSP T = (S,A,c, T, s, Sx)

while more trials required:
S =5
while s £ S,:
V(s) = mingeacs) (€(a) + Lyes T(s,2,5) - V(s))
s i~ succ(s,ap(s))

Note: V/(s) is maintained as a hash table of states. On the right
hand side of line 4 or 5, if a state s is not in V, h(s) is used.

RTDP
000080

5 = = = Sx

3.00 | 2.00 | 1.00 | 0.00
4 S

! f1l ial
3 1500 | 4.00 | 3.00 | 2,00 | Start of st tria
2 | 1

6.00 | 5.00 | 4.00 | 3.00

S0

1 |®n

7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

s === S
3.00 | 2.00 | 1.00 | 0.00
4 e
4.00 | 3.00 | 4.00 | 1.00
3) Step 1
5.00 | 4.00 | 3.00 | 2.00
2 i)
6.00 | 5.00 | 4.00 | 3.00
So
1 |®n
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Motivation RTDP

Example: RTDP

s === S
3.00 | 2.00 | 1.00 | 0.00
4 e
4.00 | 3.00 | 4.00 | 1.00
3) Step 2
5.00 | 4.00 | 3.00 | 2.00
2 |®n
6.60 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Motivation RTDP

Example: RTDP

s === S
3.00 | 2.00 | 1.00 | 0.00
4 e
4.00 | 3.00 | 4.00 | 1.00
3) Step 3
5.00 | 4.00 | 3.00 | 2.00
2 |®n
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Motivation RTDP

Example: RTDP

s === S
3.00 | 2.00 | 1.00 | 0.00
4 e
4.00 | 3.00 | 4.00 | 1.00
3) Step 4
5.00 | 4.00 | 3.00 | 2.00
2 |®n
7.18 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

s === S
3.00 | 2.00 | 1.00 | 0.00
4 e
4.00 | 3.00 | 4.00 | 1.00
3 .TT Step 5
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

s === S
3.00 | 2.00 | 1.00 | 0.00
4 o) i
4.60 | 3.00 | 4.00 | 1.00
3) Step 6
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

s === S
3.00 | 2.00 | 1.00 | 0.00
4 o) i
4.96 | 3.00 | 4.00 | 1.00
3) Step 7
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

s === S
3.00 | 2.00 | 1.00 | 0.00
4 o) i
5.18 | 3.00 | 4.00 | 1.00
3) Step 8
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

s === S
3.00 | 2.00 | 1.00 | 0.00
4 o) i
531 | 3.00 | 4.00 | 1.00
3) Step 9
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

s & = | = Sk
3.60 | 2.00 | 1.00 | 0.00
4 e
531 | 3.00 | 4.00 | 1.00
3) Step 10
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

s & = | = Sk
3.96 | 2.00 | 1.00 | 0.00
4 e
531 | 3.00 | 4.00 | 1.00
3 [Step 11
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP

[e]e]e]e] Jo]

Example: RTDP

s & = | = Sk
4.18 | 2.00 | 1.00 | 0.00
4 e
531 | 3.00 | 4.00 | 1.00
3 [Step 12
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

Example: RTDP

s & = | = Sk
4.31 | 2.00 | 1.00 | 0.00
4 e
531 | 3.00 | 4.00 | 1.00
3) Step 13
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

5 | = & | = S«
4.31 | 2.00 | 1.00 | 0.00
4 e
531 | 3.00 | 4.00 | 1.00
3) Step 14
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

5 | = | = & S«
4.31 | 2.00 | 1.00 | 0.00
4 e
531 | 3.00 | 4.00 | 1.00
3) Step 15
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

5 1= | = | = %
4.31 | 2.00 | 1.00 | 0.00
4 e
531 | 3.00 | 4.00 | 1.00
3) Step 16
5.60 | 4.00 | 3.00 | 2.00
2 i)
6.96 | 5.00 | 4.00 | 3.00
So
1 f
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

Example: RTDP

5 = | = S

431 | 2.00 | 1.00 | 0.00
4 e

5.31 | 3.00 | 4.00 | 1.00

) f2 ial

3 1560 | 400 | 3.00 [2,00 | tert of 2nd tria
2 i)

6.96 | 5.00 | 4.00 | 3.00
| &

7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Motivation RTDP

Example: RTDP

5 = | = |® %

4.31 | 2.00 | 1.00 | 0.00
4 e

531 | 3.00 | 4.00 | 1.00

[} End of 2nd trial

3 1560 | 4.00 | 3.00 | 2,00 | ENd of 2nd tria
2 i)

6.96 | 5.96 | 4.00 | 3.00
1| =

7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

Example: RTDP

5 %
431 | 2.00 | 1.00 | 0.00
4 ey
3 5.60 | 4.00 3.00 200 Start Of 3rd trial
2 ()
6.96 | 5.96 | 4.00 | 3.00
) | &0 =
7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

RTDP
000080

Example: RTDP

5 ® S«

4.31 | 2.00 | 1.00 | 0.00
4 g

5.31 | 3.00 | 4.00 | 1.60

= | M| Endof ial

3 560 | 4.00 | 3.00 | 343 | End of 3rd tria
2 i

6.96 | 5.96 | 4.00 | 3.00
1 | 2=

7.00 | 6.00 | 5.00 | 4.00

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Motivation RTDP

Example: RTDP

5 = | = S

431 | 2.00 | 1.00 | 0.00
4 e

531 | 3.00 | 7.92 | 2.38

[} End of 16th trial

3 618 | 4.00 | 5.00 | 4go | End of 16th tria
2 i

7.77 | 6.50 | 6.00 | 7.03

S0

1| =0

8.50 | 7.50 | 7.00 | 7.18

1 2 3 4

Used heuristic: shortest path assuming agent never gets stuck

Motivation RTDP ; Summar
00000e 0000000000 0o

RTDP: Theoretical Properties

Using an admissible heuristic, RTDP converges to an optimal
solution without (necessarily) computing state-value estimates for
all states.

Proof omitted.

LRTDP
©000000000

Labeled Real-time Dynamic
Programming

Motivation N LRTDP

0@00000000

Motivation

Issues of RTDP:

m States are still updated after state-value estimate
has converged.

m No termination criterion = algorithm is underspecified

Most popular algorithm to overcome these shortcomings:
Labeled RTDP (Bonet & Geffner, 2003)

LRTDP

0080000000

Labeled RTDP: Idea

The main idea of Labeled RDTP (LRTDP) is to
label states as solved
m Each trial terminates when a solved state is encountered
= solved states no longer updated
m LRTDP terminates when the initial state is labeled as solved
= well-defined termination criterion

LRTDP
000®000000

Motivation

Solved States in SSPs

m States are solved if the state-value estimate changes only little

m In presence of cycles, all states in a strongly connected
component (SCC) are considered simultaneously

m Labeled RTDP uses sub-algorithm CheckSolved to check
whether all states in a SCC are solved

LRTDP
0000800000

CheckSolved Procedure

m CheckSolved is called on all states that were encountered in
a trial in reverse order.

m CheckSolved checks how much the state-value estimates of
unlabeled states reachable under the greedy policy would
change with another update.

m If this change is below some constant ¢ for all these states
then they are all labeled as solved.

m Otherwise, CheckSolved performs an additional backup for
the encountered states, hence improving the state value
estimate for at least one of them.

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

3

visited: sg ‘

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

3
visited: sp, 51 @

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

visited: sg, 51, S»

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

Motivation

visited: sg, s1, S, S3

Motivation s 2 LRTDP Summar
000000 0000080000 00

Labeled RTDP: Example (¢ = 0.005)

3
visited: sp, s1, 52, 53, 5> @

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

Motivation

1.22 3
visited: sg, 51, S, S3, S, S4 @

Motivation N LRTDP Summar
[e]e]e]e]e] lelelele}

Labeled RTDP: Example (¢ = 0.005)

1.22 3
check_solved: sy, s1, 2, 53, 2, S4 @
reachable: s
0.9 0.1
@. = [[

change of s4: 0

Motivation N LRTDP Summar
[e]e]e]e]e] lelelele}

Labeled RTDP: Example (¢ = 0.005)

1.22 3
check_solved: sy, s1, 2, 53, 2, S4 @
reachable: s
label: s4 0.9 0.1
@, & [[
0

change of s4: 0

Motivation N LRTDP Summar
[e]e]e]e]e] lelelele}

Labeled RTDP: Example (¢ = 0.005)

1.22 3
check_solved: sp, s1, 52, 53, S, S4 @
reachable: sy, s3,(s4)
0.9 0.1
@, =] [[

change of s: 0
change of s3: 0.02 e

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

Motivation

1.222 3
check_solved: sp, s1, 52, 53, S, S4 @
reachable: sy, s3,(s4)
update: s3, s> 0.9 0.1
@, & [[
0

Motivation N LRTDP Summar
[e]e]e]e]e] lelelele}

Labeled RTDP: Example (¢ = 0.005)

1.222 3
check_solved: sy, s1, 52, 53, S, S4 @
reachable: s3, s, (s4)
0.9 0.1
@, =] [[

change of s: 0
change of s3: 0.002 e

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

Motivation

1.222 3
check_solved: sy, s1, 52, 53, S, S4 @
reachable: s3, s, (s4)
label: sy, 53 0.9 0.1
@, & [[
0

Motivation 3 > LRTDP

Labeled RTDP: Example (¢ = 0.005)

1.222 3
check_solved: sp, s1, 52, 53, S, S4 @
reachable: (s;)
0.9 0.1
@, =] [[

Motivation s 2 LRTDP Summar

Labeled RTDP: E

xample (¢ = 0.005)

1.222 3
check_solved: sp, s1, 52, 53, S, S4 @
reachable: sy, sp, (s2)
0.9 0.1
@.cc = [[

change of so: 0.2
change of s;: 0.1998 e

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

Motivation

1.222 3.2
check_solved: sp, s1, 52, 53, S, S4 @
reachable: sy, sp, (s2)
update: sp, 51 0.9 0.1
@, & [[
0

2.22 2.4198

Motivation N LRTDP Summar
[e]e]e]e]e] lelelele}

Labeled RTDP: Example (¢ = 0.005)

1.222 3.2
check_solved: sy, s1, 52, 53, S, S4 @
reachable: s, s1, (s2)
0.9 0.1
@, =] [[

change of sp: 0.2198

change of s1: 0 e
2.22 2.4198

LRTDP
0000080000

Labeled RTDP: Example (¢ = 0.005)

Motivation

1.222 3.4198
check_solved: sy, s1, 52, 53, S, S4 @
reachable: s, s1, (s2)
update: s1, Sp 0.9 0.1
@, & [[
0

2.22 2.4198

000000 0000008000

Labeled Real-time Dynamic Programming

Labeled RTDP for SSP T

while s is not solved:
ViSit(So)

Motivation N 2/ LRTDP Summary

| A\

visit state s
if s is solved or s € S,:
return
\7(5) i= Min,ca(s) (c(a) + > es T(s,a,8) - \7(5’))
s" i~ succ(s, ap(s))
visit(s’)
check_solved(s)

N

V(s) is maintained as a hash table of states. On the right hand
side of line 3 or 4 in visit(s), if a state s is not in V, h(s) is used.

Motivation RTDP

Labeled RTDP: CheckSolved

LRTDP Summary
0000000800 00

check_solved for state s

set allsolved := true, open, closed := stack
if s not labeled then push s to open
while open is not empty:
pop s’ from open and insert it into closed
if change of s’ > ¢
allsolved := false
else push all s” € succ(s’, a(s’)) to open that are
not labeled and not in open or closed
if allsolved then label all states in closed as solved
else
while closed is not empty:
pop s’ from closed and update its state value

RTDP LRTDP Summar
0000000080 oo

Motivation

Labeled RTDP: Theoretical Properties

Using an admissible heuristic, Labeled RTDP converges to an
optimal solution without (necessarily) computing state-value
estimates for all states.

Proof omitted.

LRTDP

000000000 e

Experimental Results [Bonet and Geffner, ICAPS 2003]

500

large-ring

large-square

RTDP ——

450

400

350

300

250

200

150

RTDP
VI
LAO
LRTDP

350

30f

250

150

100

50 \M

LAO
LRTDP

6 8
elapsed time

10

0 50

o 70
elapsed time

80 90

0w 110

Figure 3: Quality profiles: Average cost to the goal vs. time for RTDP, VI, ILAO* and LRTDP with the heuristic » = 0 and
3

e=10"".
algorithm small-b | large-b | h-track | small-r | large-r | small-s | large-s | small-y | large-y
Vi(h = 0) 1.101 4.045 15.451 0.662 5.435 5.896 78.720 16.418 61.773
1ILAO*(h = 0) 2.568 11.794 43.591 1.114 11.166 12.212 250.739 57.488 182.649
LRTDP(h = 0) 0.885 7.116 15.591 0.431 4.275 3.238 49.312 9.393 34.100
Table 2: Convergence time in seconds for the different algorithms with initial value function 2 = 0 and ¢ = 10~ 3. Times for
RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.
algorithm small-b | large-b | h-track | small-r | large-r | small-s | large-s | small-y | large-y
VI(Romin) 1.317 4.093 12.693 0.737 5932 6.855 102.946 17.636 66.253
ILAO* (Rymin) 1.161 2910 11.401 0.309 3514 0.387 1.055 0.692 1.367
LRTDP(Pmin) 0.521 2.660 7.944 0.187 1.599 0.259 0.653 0.336 0.749

Table 3: Convergence time in seconds for the different algorithms with initial value function & = /1, and € = 1073, Times
for RTDP not shown as they exceed the cutoff time for convergence (10 minutes). Faster times are shown in bold font.

[Je]

Summary

Motivation 3 Summary

oe

Summary

m Real-time Dynamic Programming is
an optimal algorithm for SSPs ...

m ... that backups only a subset of states ...

m ... without generating an explicit representation of the
state-space.

m Labeled RTDP labels states as solved to
stop updating converged states ...

® ... and speeds up convergence with additional backups
in reverse order.

	Motivation
	

	Real-time Dynamic Programming
	

	Labeled Real-time Dynamic Programming
	

	Summary
	

